Theorem. Every matrix A, decomposes nicely into generalized eigenspaces.

- 1. Find a polynomial $p(\lambda)$ so that p(A) has a non-trivial kernel
 - (a) The characteristic polynomial works, but it requires the determinant. the method below is actually "easier".
 - (b) Instead let \vec{v} be any non-zero vector. Since $\{A^0\vec{v}, A^1\vec{v}, \dots A^n\vec{v}\}$ must be linearly dependent, there are scalars c_i so that

$$c_0 A^0 \vec{v} + c_1 A^1 \vec{v} + \dots + c_n A^n \vec{v} = 0$$

Let $p(\lambda) = c_0 + c_1 \lambda + \cdots + c_n \lambda^n$, and note p(A) maps \vec{v} to the zero vector.

- 2. The existence of an eigenvalue λ .
 - (a) The fundament theorem of algebra says $p(x) = a(x \lambda_1) \cdots (x \lambda_n)$ for some a and roots λ_i .
 - (b) $p(A)\vec{v} = a(A \lambda_1 I) \cdots (A \lambda_n I)\vec{v}$ and one of the $(A \lambda_i)$ does not have a trivial kernel so that λ_i is an eigenvalve.
- 3. The generalized eigenspace for λ is $N = \ker(A \lambda I)^n$ and its "complement" is $C = \operatorname{range}(A \lambda I)^n$
 - (a) Eventually $N = \ker(A \lambda I)^k = \ker(A \lambda I)^{k+1}$ and this will be the generalized eigenspace. Since $\ker(A \lambda I)^k$ increases by at least one dimension each time k increases by one, $k \leq n$.
- 4. Both subspaces N and C are invariant under A.
 - (a) if AB = BA then $B(\ker A) \subset \ker A$ and $B(\operatorname{range} A) \subset \operatorname{range} A$.
 - i. If $\vec{x} \in \ker A$, then $AB\vec{x} = B(A\vec{x} = B0 = 0 \text{ so } B\vec{x} \in \ker A$.
 - ii. If $\vec{x} \in \text{range } A$, then there is \vec{y} so $\vec{x} = A\vec{y}$. Thus $B\vec{x} = BA\vec{y} = A(B\vec{y})$ must be in range A.
 - (b) $A(A \lambda I)^n = (A \lambda I)^n A$
- 5. $A|_C$ does not have λ as an eigenvalue.
 - (a) Any such eigenvector would already be in N.
- 6. Induction, Continue applying the result to $A|_C$ which must have smaller dimension.