Theorem. Every matrix A, decomposes nicely into generalized eigenspaces.

1. Find a polynomial $p(\lambda)$ so that $p(A)$ has a non-trivial kernel
(a) The characteristic polynomial works, but it requires the determinant. the method below is actually "easier".
(b) Instead let \vec{v} be any non-zero vector. Since $\left\{A^{0} \vec{v}, A^{1} \vec{v}, \ldots A^{n} \vec{v}\right\}$ must be linearly dependent, there are scalars c_{i} so that

$$
c_{0} A^{0} \vec{v}+c_{1} A^{1} \vec{v}+\cdots c_{n} A^{n} \vec{v}=0
$$

Let $p(\lambda)=c_{0}+c_{1} \lambda+\cdots c_{n} \lambda^{n}$, and note $p(A)$ maps \vec{v} to the zero vector.
2. The existence of an eigenvalue λ.
(a) The fundament theorem of algebra says $p(x)=a\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)$ for some a and roots λ_{i}.
(b) $p(A) \vec{v}=a\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right) \vec{v}$ and one of the $\left(A-\lambda_{i}\right)$ does not have a trivial kernel so that λ_{i} is an eigenvalve.
3. The generalized eigenspace for λ is $N=\operatorname{ker}(A-\lambda I)^{n}$ and its "complement" is $C=\operatorname{range}(A-\lambda I)^{n}$
(a) Eventually $N=\operatorname{ker}(A-\lambda I)^{k}=\operatorname{ker}(A-\lambda I)^{k+1}$ and this will be the generalized eigenspace. Since $\operatorname{ker}(A-\lambda I)^{k}$ increases by at least one dimension each time k increases by one, $k \leq n$.
4. Both subspaces N and C are invariant under A.
(a) if $A B=B A$ then $B(\operatorname{ker} A) \subset \operatorname{ker} A$ and $B($ range $A) \subset$ range A.
i. If $\vec{x} \in \operatorname{ker} A$, then $A B \vec{x}=B(A \vec{x}=B 0=0$ so $B \vec{x} \in \operatorname{ker} A$.
ii. If $\vec{x} \in$ range A, then there is \vec{y} so $\vec{x}=A \vec{y}$. Thus $B \vec{x}=B A \vec{y}=A(B \vec{y})$ must be in range A.
(b) $A(A-\lambda I)^{n}=(A-\lambda I)^{n} A$
5. $\left.A\right|_{C}$ does not have λ as an eigenvalue.
(a) Any such eigenvector would already be in N.
6. Induction, Continue applying the result to $\left.A\right|_{C}$ which must have smaller dimension.

