More problems on Linear Systems

1. Solve the dynamic system $x_{k+1}=A x_{k}, x_{0}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}-1 / 2 & 1 \\ 0 & 1 / 2\end{array}\right]$. What is dynamic behavior?
2. Solve the DE system $x^{\prime}(t)=A x(t), x(0)=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}-1 / 2 & 1 \\ 0 & 1 / 2\end{array}\right]$. What is dynamic behavior?
3. Solve the dynamic system $x_{k+1}=A x_{k}, x_{0}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}5 & -2 \\ 1 & 3\end{array}\right]$. Write your answer without complex numbers. What is dynamic behavior?
4. Solve the DE system $x^{\prime}(t)=A x(t), x(0)=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}5 & -2 \\ 1 & 3\end{array}\right]$. Write your answer without complex numbers. What is dynamic behavior?
5. Solve the dynamic system $x_{k+1}=A x_{k}, x_{0}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}2 & -1 \\ 1 & 0\end{array}\right]$. What is dynamic behavior?
6. Solve the DE system $x^{\prime}(t)=A x(t), x(0)=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ if $A=\left[\begin{array}{rr}2 & -1 \\ 1 & 0\end{array}\right]$. What is dynamic behavior?

Solutions

1. Eventually A has eigenvalues/eigenvectors $\lambda_{1}=1 / 2, \vec{v}_{1}=[1,1]^{T}$ and $\lambda_{2}=-1 / 2, \vec{v}_{2}=[1,0]^{T}$. Since $x_{0}=\vec{v}_{1}-2 \vec{v}_{2}$, the solution is $x_{k}=(1 / 2)^{k} \vec{v}_{1}-2(-1 / 2)^{k} \vec{v}_{2}$. This shrinks to the origin.
2. We have the same eigenvalues/eigenvectors and now $x(0)=\vec{v}_{1}-2 \vec{v}_{2}$, the solution is $x(t)=e^{t / 2} \vec{v}_{1}-$ $2 e^{-t / 2} \vec{v}_{2}$. This is a saddle point.
3. Eventually A has eigenvalues/eigenvectors $\lambda_{1}=4+i, \vec{v}_{1}=[1+i, 1]^{T}$ and $\lambda_{2}=4-i, \vec{v}_{2}=[1-i, 1]^{T}$. Since $x_{0}=(1 / 2+i) \vec{v}_{1}+(1 / 2-i) \vec{v}_{2}$ the solution is $x_{k}=(4+i)^{k}(1 / 2+i) \vec{v}_{1}+(4-i)^{k}(1 / 2-i) \vec{v}_{2}$. This spirals out.
Now to remove the complex numbers. No please don't use the binomial theorem. Use change of variables $y_{k}=P^{-1} x_{k}$ or $x_{k}=P y_{k}$ where $P=\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right], C=\left[\begin{array}{rr}4 & -1 \\ 1 & 4\end{array}\right]=\sqrt{17}\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, $C^{k}=17^{k / 2}\left[\begin{array}{rr}\cos k \theta & -\sin k \theta \\ \sin k \theta & \cos k \theta\end{array}\right]$, and $P^{-1}=\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]$.
Now $y_{0}=P^{-1} x_{0}=[1,2]^{T}, y_{k}=C^{k} y_{0}=17^{k / 2}\left(\left[\begin{array}{c}\cos k \theta-2 \sin k \theta \\ \sin k \theta+2 \cos k \theta\end{array}\right]\right.$ and so $x_{k}=P y_{k}=17^{k / 2}\left[\begin{array}{c}-\cos k \theta-3 \sin k \theta \\ \cos k \theta-2 \sin k \theta\end{array}\right]$
Alternately, we observe both u and v are independent solutions to $y_{k+1}=C y_{k}$ with $u_{0}=[1,0]^{T}$ and $v_{0}=[0,1]^{T}$ where. $u_{k}=17^{k / 2}\left[\begin{array}{c}\cos k \theta \\ \sin k \theta\end{array}\right] v_{k}=17^{k / 2}\left[\begin{array}{c}-\sin k \theta \\ \cos k \theta\end{array}\right]$. Since we want $y_{0}=[1,2]^{T}$, pick $y_{k}=1 u_{k}+2 v_{k}$ and $x_{k}=P\left(u_{k}+2 v_{k}\right)=P u_{k}+2 P v_{k}$
4. We have the same eigenvalues/eigenvectors and now $x(0)=(1 / 2+i) \vec{v}_{1}+(1 / 2-i) \vec{v}_{2}$ the solution is $x(t)=(1 / 2+i) e^{t(4+i)} \vec{v}_{1}+(1 / 2-i) e^{t(4-i)} \vec{v}_{2}$ This also spirals outward.
To remove the complex numbers we convert to the real and imaginary parts of $\vec{w}=e^{4 t}(\cos t+$ $i \sin t) \vec{v}_{1} u(t)=\operatorname{Re} \vec{w}=\left[\begin{array}{c}e^{4 t} \cos t-e^{4 t} \sin t \\ e^{4 t} \cos t\end{array}\right] v(t)=\operatorname{Im} \vec{w}=\left[\begin{array}{c}e^{4 t} \cos t+e^{4 t} \sin t \\ e^{4 t} \sin t\end{array}\right]$ Are both solutions to $x^{\prime}(t)=A x(t)$ with $u(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ Eventually $x(t)=u(t)-2 v(t)=$ $\left[\begin{array}{c}-e^{4 t} \cos t-3 e^{4 t} \sin t \\ e^{4 t} \cos t-2 e^{4 t} \sin t\end{array}\right]$
5. Eventually A has only the repeated eigenvalue 1 , eigenvector $\vec{v}_{1}=[1,1]^{T}$ and generalized eigenvector $\vec{v}_{2}=[1,0]^{T} x_{0}=\vec{v}_{1}-2 \vec{v}_{2}$, the solution is $x_{k}=(1)^{k} \vec{v}_{1}-2 k(1)^{k-1} \vec{v}_{1}-2(1)^{k} \vec{v}_{2}=\vec{v}_{1}-2 k \vec{v}_{1}-2 \vec{v}_{2}$. This expands in the $-\vec{v}_{1}$ direction.
6. We have the same eigenvalues/eigenvectors and now $x(0)=\vec{v}_{1}-2 \vec{v}_{2}$, the solution is $x(t)=e^{t} \vec{v}_{1}-$ $2 t e^{t} \vec{v}_{1}-2 e^{t} \vec{v}_{2}$. This expands.
