MAS 4106 Linear Algebra 2 Quiz 118 Jan 2006 Name:
Show ALL work for credit; Give exact answers when possible.

1. True or False. Let $V=\{f \in C[0, \pi]: f(2) \geq 0\}$, Let W be all polynomials of degree at most 3 with integers as coefficients and let S be all vectors of the form $\left[\begin{array}{c}-a+1 \\ a-6 b \\ 2 b+a\end{array}\right]$ where a and b represent arbitrary reals.
(a) The set $\mathbb{R}^{55} \mathrm{~s}$ a vector space.
(b) The zero vector is in V.
(c) If $f \in V$ and $c \in \mathbb{R}$, then $c f \in V$.
(d) If $f, g \in V$, then $f+g \in V$.
(e) If $p, q \in W$, then $p+q \in W$
(f) If $p \in W$, then $5 p \in W$
(g) W is a vector space.
(h) $S=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -6 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
(i) The collection of functions of the form $c_{1} e^{-2 t}+c_{2} e^{4 t}$ is a vector space.
(j) The solution set of $x+6 y-2 z=5$ is a subspace on \mathbb{R}^{3}
2. Show $W=\left\{f \in C[0,1]: \int_{0}^{1} f(t) d t=0\right\}$ is a subspace of $C[0,1]$
(a) Show the zero function is in W.
(b) Show if $f, g \in W$, then $f+g \in W$
(c) Show if $f \in W$ and $c \in \mathbb{R}$, then $c f \in W$
