MAS 4106 Linear Algebra 2 Quiz 1 18 Jan 2006 <u>Name:</u> Show ALL work for credit; Give exact answers when possible.

1. True or False. Let $V = \{f \in C[0, \pi] : f(2) \ge 0\}$, Let W be all polynomials of degree at most 3 with integers as coefficients and let S be all vectors of the form $\begin{bmatrix} -a+1\\a-6b\\2b+a \end{bmatrix}$ where a and b represent arbitrary

reals.

- (a) The set \mathbb{R}^{55} s a vector space.
- (b) The zero vector is in V.
- (c) If $f \in V$ and $c \in \mathbb{R}$, then $cf \in V$.
- (d) If $f, g \in V$, then $f + g \in V$.
- (e) If $p, q \in W$, then $p + q \in W$
- (f) If $p \in W$, then $5p \in W$
- (g) W is a vector space.

(h)
$$S = \operatorname{span} \left\{ \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-6\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

- (i) The collection of functions of the form $c_1e^{-2t} + c_2e^{4t}$ is a vector space.
- (j) The solution set of x + 6y 2z = 5 is a subspace on \mathbb{R}^3
- 2. Show $W = \{f \in C[0,1] : \int_0^1 f(t) dt = 0\}$ is a subspace of C[0,1]
 - (a) Show the zero function is in W.

(b) Show if $f, g \in W$, then $f + g \in W$

(c) Show if $f \in W$ and $c \in \mathbb{R}$, then $cf \in W$