MAS 4106 Linear Algebra 2 Quiz 315 Feb 2006 Name:
Show ALL work for credit; Give exact answers when possible.

1. The matrix A has eigenvalues $\lambda_{1}=5$ and $\lambda_{2}=-3$ with eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{r}-2 \\ 3\end{array}\right]$ and let $\vec{w}=\left[\begin{array}{l}0 \\ 5\end{array}\right]$
(a) Solve the differenece equation, the discrete dynamic system $x_{k+1}=A x_{k}$ with initial condition $x_{0}=\vec{w}$.
(b) Solve the matrix differential equation $x^{\prime}(t)=A x(t)$ with initial condition $x(0)=\vec{w}$.
2. True or False. The 3×5 matrix $B=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{5}\right]$ row reduces to $\left[\begin{array}{rrrrr}0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Let A be an $n \times n$ matrix with real entries.
(a) If $(A-\lambda I)^{3} \vec{v}=0$ then $(A-\lambda I)^{4} \vec{v}=0$.
(b) If $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=0$ is true for some choice of scalars $c_{1}, c_{2}, \ldots c_{n}$ then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}\right\}$ is linearly dependent.
(c) If $\{\vec{v}, \vec{w}\},\{\vec{u}, \vec{v}\}$ and $\{\vec{u}, \vec{w}\}$ are all linearly independent, then $\{\vec{u}, \vec{v}, \vec{w}\}$ is also linearly independent.
(d) A has at least one eigenvector.
(e) \mathbb{R}^{n} has a basis of eigenvectors of A.
(f) A basis for the kernel of B is $\left\{[1,0,0,0,0]^{T},[0,-2,0,1,0]^{T},[0,-3,3,0,1]^{T}\right\}$.
(g) A basis for the column space of B is $\left\{[1,0,0]^{T},[0,1,0]^{T}\right\}$.
(h) For every λ there is an integer $k \leq n$ so that $\operatorname{ker}(A-\lambda I)^{k}=\operatorname{ker}(A-\lambda I)^{k+1}$
(i) If \vec{v} is a vector so that $(A-5 I) \vec{v} \neq 0$ but $(A-5 I)^{2} \vec{v}=0$ then \vec{v} is a generalized eigenvector of A order 2 for the eigenvalue 5 .
(j) The matrix differential equation $x^{\prime}=A x$ has the origin as an attractor if all the eigenvalues λ of A satisfy $|\lambda|<1$.
