MAS 4106 Linear Algebra 2 Quiz 417 Mar 2006 Name:
Show ALL work for credit; Give exact answers when possible.

1. True or False.
(a) The matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ is positive definite.
(b) If A is any $n \times m$ matrix, then $A^{T} A$ is positive semi-definite.
(c) Every quadratic form can be written $x^{T} A x$ for some symmetric matrix A.
(d) Orthogonal matrices actually have orthonormal columns.
(e) For a positive definite matrix, the eigenvalues and singular values are never the same.
(f) Only symmetric matrices are orthogonally diagonizable.
(g) If P is an $n \times n$ matrix and $P^{-1}=P^{T}$, then P is an orthogonal matrix.
(h) Each orthogonal matrix is symmetric.
(i) The maximum value of the quadratic form $Q(x)=x^{T} A x,(A$ symmetric), constrained to the n-sphere $x^{T} x=1$ is the largest eigenvalue in absolute value of A.
(j) If A has eigenvalues 9 and -4 , then A has singular values 3 and 2 .
2. Find the singular value decomposition for the matrix A, that is find the orthogonal matrices U and V and a diagonal-like matrix Σ so that $A=U \Sigma V^{T}$, when

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]
$$

