1. The sets A and B are subsets of the vector space \mathbb{R}^3. For each set, either show that it is affine by showing the affine combination $s\vec{w} + (1 - s)\vec{v}$ does belong to the set whenever \vec{w} and \vec{v} belong to the set and s is a real scalar; or show that it is not affine by producing elements \vec{w} and \vec{v} of the set and a real scalar s, so that the affine combination $s\vec{w} + (1 - s)\vec{v}$ does not belong to given set.

(a) $A = \{(x, y, z) : x > 0\}$

(b) $B = \{(x, y, z) : x - z = 5\}$

2. The sets F and S are subsets of the vector space $C([0, 1])$, the collection of continuous functions $f : [0, 1] \rightarrow \mathbb{R}$. Let $F = \{f : \int_0^1 f(t) \, dt = 1\}$ and let $S = \{f : \int_0^1 f(t) \, dt = 0\}$. (You may remember from the first quiz that S is a subspace of $C([0, 1])$.) Show If $g \in F$, then $S = F - g = \{f - g : f \in F\}$. [Hint you need to show $F - g \subset S$ and $S \subset F - g$.]