MAS 4106 Linear Algebra 2 Quiz 524 Mar 2006 Name:
Show ALL work for credit; Give exact answers when possible. This is a Take home, open book, open notes quiz - due Monday 27 Mar.

1. The sets A and B are subsets of the vector space \mathbb{R}^{3}. For each set, either show that it is affine by showing the affine combination $s \vec{w}+(1-s) \vec{v}$ does belong to the set whenever \vec{w} and \vec{v} belong to the set and s is a real scalar; or show that it is not affine by producing elements \vec{w} and \vec{v} of the set and a real scalar s, so that the affine combination $s \vec{w}+(1-s) \vec{v}$ does not belong to given set.
(a) $A=\{(x, y, z): x>0\}$
(b) $B=\{(x, y, z): x-z=5\}$
2. The sets F and S are subsets of the vector space $C([0,1])$, the collection of continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Let $F=\left\{f: \int_{0}^{1} f(t) d t=1\right\}$ and let $S=\left\{f: \int_{0}^{1} f(t) d t=0\right\}$. (You may remember from the first quiz that S is a subspace of $C[0,1]$.) Show If $g \in F$, then $S=F-g=\{f-g: f \in F\}$. [Hint you need to show $F-g \subset S$ and $S \subset F-g$.]
