Linear Programming $\S9.1 \#15$ geometric and via simplex method.

1. Problem statement: Let x_1 be the number of Widgets and x_2 the number of Whammies, eventually we reduced the problem to $\max\{20x_1 + 26x_2\}$

given

$$5x_1 + 2x_2 \le 200$$

$$x_1 + 2x_2 \le 80$$

$$x_1 + x_2 \le 50$$

$$x_1 \ge 0; \quad x_2 \ge 0$$

2. Geometric Solution, plot the feasible region \mathcal{F}

The extreme points were found by setting the inequalities to equalities and solving them a pair at a time. Note (30, 25) is outside the feasible region. By checking the *extreme points* we see the maximum value of \$1180 occurs when $x_1 = 20$ and $x_2 = 30$.

x	f(x)
(0, 0)	0
(0, 40)	1040
(40, 0)	800
(20, 30)	1180
(100/3, 50/3)	1100

- 3. Simplex Method
 - (a) Add slack variables, we increase the number of x_i variables adding one for each inequality changing it into an equality. This changes the problem to

$$\max\{20x_1+26x_2\}$$

given

$$5x_1 + 2x_2 + x_3 = 200$$

$$x_1 + 2x_2 + x_4 = 80$$

$$x_1 + x_2 + x_5 = 50$$

$$x_1 \ge 0; \quad x_2 \ge 0; \quad x_3 \ge 0; \quad x_4 \ge 0; \quad x_5 \ge 0$$

- (b) Add a variable $M = 20x_1 + 26x_2$ for the function we are tying to optimize. Write this as $-20x_1 26x_2 + M = 0$. Treat M like it was x_6 in some sense.
- (c) The initial simplex tableau. The variables $x_1 = x_2 = 0$ are "out", the variable $x_3 = 200$, $x_4 = 80$ and $x_5 = 50$ are "in" and M = 0. Bringing either x_1 or x_2 in will increase M so we are not optimal, geometrically we are at the extreme point (0, 0).

Γ	x_1	x_2	x_3	x_4	x_5	M	b
	5	2	1	0	0	0	200
	1	2	0	1	0	0	80
	1	1	0	0	1	0	50
	20	-26	0	0	0	1	0

(d) We need to decide what variable to bring in and which row to pivot on. We pick x_2 because 26 > 20 so changes in x_2 have more effect than changes in x_1 . To keep us inside the feasible region, we pick the row with both positive $a_{i,2}$ and smallest $b_i/a_{i,2}$. Here the numbers are 200/2 = 100, 80/2 = 40 and 50/1 = 50 so we pivot about row 2. (Never pivot on the bottom row.)

Γ	x_1	x_2	x_3	x_4	x_5	M	<i>b</i>
	4	0	1	-1	0	0	120
	1/2	1	0	1/2	0	0	40
	1/2	0	0	-1/2	1	0	10
	-7	0	0	13	0	1	1040

Now x_1 and x_4 are out and $x_2 = 40$, $x_3 = 120$, $x_5 = 10$ M = 1040. Geometrically we are at the extreme point (0, 40). We are not done, as bringing x_1 in will increase M.

(e) There is only variable to bring in which will increase M. Which row? 120/4 = 30, 40/(1/2) = 80, and 10/(1/2) = 20 so we pivot on row 3.

Γ	x_1	x_2	x_3	x_4	x_5	M	b
	0	0	1	3	-8	0	40
	0	1	0	1	-1	0	30
	1	0	0	-1	2	0	20
	0	0	0	6	14	1	1180

Now x_4 and x_5 are out and $x_1 = 20$, $x_2 = 30$, $x_3 = 40$ M = 1180. Geometrically we are at the extreme point (20, 30). There is no variable which will increase M so we are at the optimal solution.

4. Scilab

```
-->p = [20;26]; // profit
-->b = [200;80;50]; // b
-->a = [5 2; 1 2; 1 1]; // ax <= b
-->[x, lagr, f] = linpro(-p, a,b,[0,0]',[]) // min's instead of max
f = -1180. // max with minus sign
lagr =
!
   0. !
    0. !
!
   0. !
!
    6. !
!
!
    14. !
            // extreme point
х
   =
   20. !
!
!
    30. !
```