Linear Programming $\S 9.1$ \#15 geometric and via simplex method.

1. Problem statement: Let $x_{1}$ be the number of Widgets and $x_{2}$ the number of Whammies, eventually we reduced the problem to

$$
\max \left\{20 x_{1}+26 x_{2}\right\}
$$

given

$$
\begin{gathered}
5 x_{1}+2 x_{2} \leq 200 \\
x_{1}+2 x_{2} \leq 80 \\
x_{1}+x_{2} \leq 50 \\
x_{1} \geq 0 ; \quad x_{2} \geq 0
\end{gathered}
$$

2. Geometric Solution, plot the feasible region $\mathcal{F}$


The extreme points were found by setting the inequalities to equalities and solving them a pair at a time. Note $(30,25)$ is outside the feasible region. By checking the extreme points we see the maximum value of $\$ 1180$ occurs when $x_{1}=20$ and $x_{2}=30$.

| $x$ | $f(x)$ |
| ---: | ---: |
| $(0,0)$ | 0 |
| $(0,40)$ | 1040 |
| $(40,0)$ | 800 |
| $(20,30)$ | 1180 |
| $(100 / 3,50 / 3)$ | 1100 |

3. Simplex Method
(a) Add slack variables, we increase the number of $x_{i}$ variables adding one for each inequality changing it into an equality. This changes the problem to

$$
\max \left\{20 x_{1}+26 x_{2}\right\}
$$

given

$$
\begin{array}{rlrl}
5 x_{1}+2 x_{2}+x_{3} & & =200 \\
x_{1}+2 x_{2}+x_{4} & =80 \\
x_{1}+x_{2} & +x_{5} & =50 \\
x_{1} \geq 0 ; \quad x_{2} \geq 0 ; \quad x_{3} \geq 0 ; \quad x_{4} & \geq 0 ; \quad x_{5} \geq 0
\end{array}
$$

(b) Add a variable $M=20 x_{1}+26 x_{2}$ for the function we are tying to optimize. Write this as $-20 x_{1}-26 x_{2}+M=0$. Treat $M$ like it was $x_{6}$ in some sense.
(c) The initial simplex tableau. The variables $x_{1}=x_{2}=0$ are "out", the variable $x_{3}=200, x_{4}=80$ and $x_{5}=50$ are "in" and $M=0$. Bringing either $x_{1}$ or $x_{2}$ in will increase $M$ so we are not optimal, geometrically we are at the extreme point $(0,0)$.
$\left[\begin{array}{rrrrrr|r}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & M & b \\ \hline 5 & 2 & 1 & 0 & 0 & 0 & 200 \\ 1 & 2 & 0 & 1 & 0 & 0 & 80 \\ 1 & 1 & 0 & 0 & 1 & 0 & 50 \\ \hline-20 & -26 & 0 & 0 & 0 & 1 & 0\end{array}\right]$
(d) We need to decide what variable to bring in and which row to pivot on. We pick $x_{2}$ because $26>20$ so changes in $x_{2}$ have more effect than changes in $x_{1}$. To keep us inside the feasible region, we pick the row with both positive $a_{i, 2}$ and smallest $b_{i} / a_{i, 2}$. Here the numbers are $200 / 2=100$, $80 / 2=40$ and $50 / 1=50$ so we pivot about row 2. (Never pivot on the bottom row.)
$\left[\begin{array}{rrrrrr|r}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & M & b \\ \hline 4 & 0 & 1 & -1 & 0 & 0 & 120 \\ 1 / 2 & 1 & 0 & 1 / 2 & 0 & 0 & 40 \\ 1 / 2 & 0 & 0 & -1 / 2 & 1 & 0 & 10 \\ \hline-7 & 0 & 0 & 13 & 0 & 1 & 1040\end{array}\right]$

Now $x_{1}$ and $x_{4}$ are out and $x_{2}=40, x_{3}=120, x_{5}=10 M=1040$. Geometrically we are at the extreme point $(0,40)$. We are not done, as bringing $x_{1}$ in will increase $M$.
(e) There is only variable to bring in which will increase $M$. Which row? $120 / 4=30,40 /(1 / 2)=80$, and $10 /(1 / 2)=20$ so we pivot on row 3 .
$\left[\begin{array}{rrrrrr|r}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & M & b \\ \hline 0 & 0 & 1 & 3 & -8 & 0 & 40 \\ 0 & 1 & 0 & 1 & -1 & 0 & 30 \\ 1 & 0 & 0 & -1 & 2 & 0 & 20 \\ \hline 0 & 0 & 0 & 6 & 14 & 1 & 1180\end{array}\right]$

Now $x_{4}$ and $x_{5}$ are out and $x_{1}=20, x_{2}=30, x_{3}=40 M=1180$. Geometrically we are at the extreme point $(20,30)$. There is no variable which will increase $M$ so we are at the optimal solution.
4. Scilab

```
-->p = [20;26]; // profit
-->b = [200;80;50]; // b
-->a = [5 2; 1 2; 1 1]; // ax <= b
-->[x, lagr, f] = linpro(-p, a,b,[0,0]',[]) // min's instead of max
    f = - 1180. // max with minus sign
    lagr =
! 0. !
! 0. !
! 0. !
! 6. !
! 14.!
    x = // extreme point
! 20.!
! 30.!
```

