Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Find the stochastic matrix and steady state vector.

Students live either on-campus or off campus. Every year 40% of the on-campus students move offcampus (and the rest stay on-campus) and 30% of the off-campus students move on-campus (and the rest stay off-campus).
2. Solve the system of differential equations $x^{\prime}(t)=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right] x(t)$ with initial condition $x(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]$
3. True or False.
(a) If $a, b \in \mathbb{R}$, so $z=a-b i \in \mathbb{C}$, then $e^{z}=e^{a}(\cos b-i \sin b)$.
(b) The set of continuous functions f with $\int_{a}^{b} f(t) d t=1$ is a subspace of $C[a, b]$.
(c) If f is an odd function, then all of the coefficients of the $\sin n t$ terms in the Fourier series approximation to f on $C[-\pi, \pi]$ will be 0 .
(d) Either $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is linearly independent or there are constants c_{2}, c_{3} and c_{4}, not all zero, so that $\vec{v}_{1}=c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+c_{4} \vec{v}_{4}$
(e) Let $P=\left\{f \in C[a, b]: \int_{a}^{b} f(t) d t \geq 0\right\}$, if f and g are in P, then $f+g \in P$
(f) The function $t e^{t}$ is a generalized eigenvector of order 2 for the eigenvalue 1 and the differentiation operator $D f=f^{\prime}(t)$.
(g) If $e_{1}, \ldots e_{n}$ is an orthonormal basis for the subspace $S \subset V$ and $v \in V \backslash S$, then the vector in S closest to v is $\left\langle e_{1}, v\right\rangle e_{1}+\cdots\left\langle e_{n}, v\right\rangle e_{n}$.
(h) If $p(t)=t$ and $q(t)=t(1-t)$ and $\langle\cdot, \cdot\rangle$ is given by evaluation at $-3,-1,1,3$, then in this inner product $p(t) \perp q(t)$.
(i) If A has 0 as a repeated eigenvalue with one independent eigenvector $\vec{v}_{1}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ and $\vec{v}_{1}=$ $A\left[\begin{array}{r}-1 \\ 5\end{array}\right]$ then $A P=P B$ where $P=\left[\begin{array}{rr}5 & 1 \\ -1 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
(j) If A has $4-3 i$ as an eigenvalue with eigenvector $\left[\begin{array}{c}2+5 i \\ 1\end{array}\right]$ then $A P=P C$ where $P=\left[\begin{array}{ll}2 & 5 \\ 1 & 0\end{array}\right]$ and $C=5\left[\begin{array}{rr}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$.
4. Find the third-order Fourier approximation to the piecewise continuous function $f(t)$ (defined below) on $C[0,2 \pi]$.

$$
f(t)= \begin{cases}1, & 0 \leq t \leq \pi \\ 0, & \pi \leq t \leq 2 \pi\end{cases}
$$

