Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Let $Q(x)$ be the quadratic form $x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}$ on \mathbb{R}^{2}
(a) Find a symmetric matrix A so that $Q(x)=x^{T} A x$.
(b) Is A positive definite, positive semi-definite, negative definite, negative semi-definite or indefinite?
(c) What is the maximum value of $Q(x)$ on the sphere $x^{T} x=1$?
(d) What is the minimum value of $Q(x)$ on the sphere $x^{T} x=1$?
(e) Find an orthogonal matrix P such that the change of variable $x=P y$ transforms $x^{T} A x$ into a quadratic form with no cross product terms.

2. Barycentric coordinates. The picture above shows three vectors v_{1}, v_{2} and v_{3} in the plane \mathbb{R}^{2} and a number of other points ($A-N$ with I missing) and lines. Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is affinely independent, each point P on the plane as unique barycentric coordinates $\left(c_{1}, c_{2}, c_{3}\right)$ so that P is the affine combination $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$.
(a) Which point from A through N has coordinates $(0,+,-)$ (that is $c_{1}=0, c_{2}>0$ and $\left.c_{3}<0\right)$?
(b) Which point from A through N has coordinates $(+,+,+)$?
(c) What two element subset S of $\left\{v_{1}, v_{2}, v_{3}\right\}$ has the line $A N \subset \operatorname{aff} S$?
(d) What signs are the affine coordinates of the point D ?
(e) Which of the points from A through N have a $c_{2}>0$.

There is more test on the other side
3. True or False.
(a) Every convex set is affine.
(b) If $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is affinely dependent then $\left\{v_{2}-v_{1}, v_{3}-v_{1}, \ldots v_{n}-v_{1}\right\}$ is linearly dependent.
(c) If $A=U \Sigma V^{T}$ is the singular value decomposition of a rank k operator, then first k columns of U is an orthonormal basis for $\operatorname{Col} A$.
(d) The set $\left\{(x, y, z) \in \mathbb{R}^{3}: z \geq 5\right\}$ is affine.
(e) $2+5 i$ can be an eigenvalue to for a symmetric $n \times n$ matrix.
(f) There is a symmetric matrix A with eigenvector $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ for the eigenvalue 5 and the eigenvector $\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$ for the eigenvalue 3.
(g) In a Principal Component Analysis of $X_{1} \ldots X_{N}$ in \mathbb{R}^{3}, the 3×3 covariance matrix has eigenvalues $9,2.5$ and 0.5 with eigenvectors $\left[\begin{array}{r}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right],\left[\begin{array}{r}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right],\left[\begin{array}{r}1 / \sqrt{6} \\ -1 / \sqrt{6} \\ -2 / \sqrt{6}\end{array}\right]$, then 75% of the variance is in the "index" of performance given by $\left(x_{1}-x_{2}+x_{3}\right) / \sqrt{3}$.
(h) The $\operatorname{conv}\left\{(x, y): y=e^{-x}, x \geq 0\right\}=\{(0,1)\} \cup\left\{(x, y): e^{-x} \leq y \leq 1, x \geq 0\right\}$.
(i) The hyperplane $x+y+z=5$ in \mathbb{R}^{3} strictly separates the origin $A=\{(0,0,0)\}$ from the sphere $B=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=500\right\}$
(j) If the linear functional $f(x)=[1,1,1] x$, and vectors $v_{1}=\left[\begin{array}{r}3 \\ -1 \\ 3\end{array}\right], v_{2}=\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, then $\operatorname{conv}\left\{v_{1}, v_{2}, v_{3}\right\} \subset[f: 5]$.
4. Find the singular value decomposition for the matrix A, that is find the orthogonal matrices U and V and a diagonal-like matrix Σ so that $A=U \Sigma V^{T}$, when

$$
A=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right]
$$

