1. Find the curl and div of \(\mathbf{F} = \langle x^2y, yz^2, zx^2 \rangle \).

2. Find \(f \) so that \(\mathbf{F} = \nabla f \) and use it to find the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \). Here \(\mathbf{F} = \langle 2xz + \sin y, x \cos y, x^2 \rangle \) and \(C \) is a curve from \((1, 0, 0)\) to \((1, 0, 2\pi)\).

3. Evaluate the line integral \(\int_C x^2ydx - 3y^2dy \) using Green’s Theorem when \(C \) is the curve which goes around the perimeter of the region \(\{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 1\} \) in the backwards (clockwise) direction.

4. Find the equation of the tangent plane to the parametric surface given by \(\langle u^2, u - v^2, v^2 \rangle \) at the point \((1, 0, 1)\).

5. Rewrite but do NOT evaluate the surface integral \(\iint_S \mathbf{F} \cdot d\mathbf{S} \) as an usual double iterated integral (including limits of integration and a simplified integrand). Here \(\mathbf{F} = \langle y, x, xy \rangle \) and \(S \) is the portion of the paraboloid \(z = x^2 + 2y^2 \) over the region \(\{(x, y) : 1 \leq x \leq 2, \ln x \leq y \leq \pi\} \) Use the upward pointing normal of \(S \).

6. Set up but do NOT evaluate a double iterated integral for the surface area of the surface \(z = y^2 - x^2 \) that lies between the cylinders \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \). The double iterated integral needs to have limits of integration and a simplified integrand.

7. Use cylindrical co-ordinates to evaluate \(\int \int_E x^2dV \) when \(E \) is the solid within \(x^2 + y^2 = 1 \), above \(z = 0 \) and below \(z^2 = 4x^2 + 4y^2 \).

8. Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) if \(\mathbf{F} = \langle x^2y, -xy \rangle \), and \(\mathbf{r}(t) = \langle t^3, t^4 \rangle, 0 \leq t \leq 1 \).

9. Use the given transformation to evaluate \(\int \int_R x\,dA \) where \(R \) is the region in the FIRST quadrant where \(9x^2 + 4y^2 \leq 36 \) and the transformation is \(x = 2u, y = 3v \). Also explicitly draw \(R \) and \(S \), the region in the \(uv \) plane that maps to \(R \) in the \(xy \) plane by this transformation. Clearly label the Jacobian of the transformation.

10. Rewrite the the limits of \(\int_0^1 \int_{\sqrt{\pi}}^{1-y} f(x, y, z)dzdydx \) in the orders \(dxdydz \) and \(dydzdx \).