Show **ALL** work for credit; be neat; and use only **ONE** side of each page of paper.

- 1. Find the curl and div of $\mathbf{F} = \langle x^2y, yz^2, zx^2 \rangle$.
- 2. Find f so that $\mathbf{F} = \nabla f$ and use it to find the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$. Here $\mathbf{F} = \langle 2xz + \sin y, x \cos y, x^2 \rangle$ and C is a curve from (1,0,0) to $(1,0,2\pi)$.
- 3. Evaluate the line integral $\int_C x^2 y dx 3y^2 dy$ using Green's Theorem when C is the curve which goes around the perimeter of the region $\{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$ in the backwards (clockwise) direction.
- 4. Find the equation of the tangent plane to the parametric surface given by $\langle u^2, u v^2, v^2 \rangle$ at the point (1,0,1).
- 5. Rewrite but do **NOT** evaluate the surface integral $\int \int_S \mathbf{F} \cdot d\mathbf{S}$ as an usual double iterated integral (including limits of integration and a simplified integrand). Here $\mathbf{F} = \langle y, x, xy \rangle$ and S is the portion of the paraboloid $z = x^2 + 2y^2$ over the region $\{(x,y) : 1 \le x \le 2, \ln x \le y \le \pi\}$ Use the upward pointing normal of S.
- 6. Set up but do **NOT** evaluate a double iterated integral for the surface area of the surface $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. The double iterated integral needs to have limits of integration and a simplified integrand.
- 7. Use cylindrical co-ordinates to evaluate $\int \int \int_E x^2 dV$ when E is the solid within $x^2 + y^2 = 1$, above z = 0 and below $z^2 = 4x^2 + 4y^2$.
- 8. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F} = \langle x^{2}y, -xy \rangle$, and $\mathbf{r}(t) = \langle t^{3}, t^{4} \rangle$, $0 \le t \le 1$.
- 9. Use the given transformation to evaluate $\int \int_R x dA$ where R is the region in the **FIRST** quadrant where $9x^2 + 4y^2 \le 36$ and the transformation is x = 2u, y = 3v. Also explicitly draw R and S, the region in the uv plane that maps to R in the xy plane by this transformation. Clearly label the Jacobian of the transformation.
- 10. Rewrite the limits of $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x,y,z) dz dy dx$ in the orders dx dy dz and dy dz dx.

