3.15: The spanning trees are listed below.

3.16: The spanning tree in row \(i \) and col \(j \) above has the Prüfer code \(ij \).

3.22: For each edge \(e \) we divide the spanning trees of \(G \) into two subsets, those which contain \(e \) and those that do not. Clearly a spanning tree of \(G \) which does not contain \(e \) is also a spanning tree of \(G - e \). Conversely, a spanning tree of \(G - e \) is a spanning tree of \(G \) which does not contain \(e \). This is a 1-1 correspondence between spanning trees of \(G \) not containing \(e \) and spanning trees of \(G - e \).

Suppose \(T \) is a spanning tree of \(G \) which does contain \(e = uv \). The graph \(T \circ e \) is still connected and has one less edge than vertex so it is a tree and it spans \(G \circ e \). The problem is going backwards from a spanning tree of \(G \circ e \) to a spanning tree of \(G \) which uses \(e \) when \(G \circ e \) is a multi-graph and not a graph. Let \(\bar{e} \) be the new vertex of \(G \circ e \) and label each edge incident to \(\bar{e} \) with either \(u \) or \(v \) depending on if it came from an edge incident to \(u \) or \(v \) respectively.

Suppose \(S \) is a spanning tree of the multi-graph \(G \circ e \). Construct \(T \) from \(S \) as follows. Any edge in \(S \) not incident to \(\bar{e} \) is also an edge of \(T \). The edges \(u\bar{e} \) in \(S \) incident to \(\bar{e} \) are labeled \(u \) or \(v \) which correspond to \(wu \) or \(wv \) respectively in \(T \). Add the edge \(e \) to \(T \), so \(T \) has the correct number of edges for a tree. Furthermore, this construction cannot create a cycle so \(T \) is a spanning tree of \(G \). This is a 1-1 correspondence between spanning trees of \(G \) containing \(e \) and spanning trees of \(G \circ e \).