1. For the IVP \(y' = t^2 + y^2 = f(t, y) \) and \(y(0) = 1 \) numerically (by hand) compute the solution with a stepsize of \(\Delta t = h = 1/2 \).

 (a) By Euler’s method by completing a table like the one below. See the example in part 2. Euler’s method uses \(hy'(t) = h f(t, y(t)) \approx \Delta y \) and so \(y(t + h) \approx y + \delta y = y(t) + hy'(t) \).

 \[
 \begin{array}{c|c|c|c|c}
 t & y(t) & y'(t) & \Delta y & y(t + h) \\
 \hline
 0 & & & & \\
 1/2 & & & & \\
 1 & & & & \\
 3/2 & & & & \\
 \end{array}
 \]

 (b) By RK’s method by completing a table like the one below. RK also uses \(y(t + h) \approx y + \Delta y \) but \(\Delta y = (\text{avg } y') h \) where

 \[
 k_1 = f(t, y(t)) \quad k_2 = f(t+h/2, y(t)+k_1h/2) \quad k_3 = f(t+h/2, y(t)+k_2h/2) \quad k_4 = f(t+h), y(t)+k_3h
 \]

 \[
 \text{avg } y' = (k_1 + 2k_2 + 2k_3 + k_4)/6
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c}
 t & y(t) & k_1 & k_2 & k_3 & k_4 & \text{avg } y' & \Delta y & y(t + h) \\
 \hline
 0 & & & & & & & & \\
 1/2 & & & & & & & & \\
 1 & & & & & & & & \\
 3/2 & & & & & & & & \\
 \end{array}
 \]

2. We do an example that is almost identical. Our IVP is \(y' = 1 + y^2 = f(t, y) \) and \(y(0) = 0 \). Observe, first \(y(t) = \tan t \) is a solution to this equation and second that this solution blows up as \(t \to \pi/2 \) from the left.

 (a) Euler’s method table. Euler’s method uses \(hy'(t) = h f(t, y(t)) \approx \Delta y \) and so \(y(t+h) \approx y(t) + hy'(t) \).

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c}
 t & y(t) & y'(t) & \Delta y & y(t + h) \\
 \hline
 0 & 0 & 1 & 1/2 & 1/2 \\
 1/2 & 1/2 & 5/4 & 5/8 & 9/8 \\
 1 & 9/8 & 145/64 & 145/128 & 289/128 \\
 3/2 & 289/128 & 99905/16384 & 99905/32768 & 173889/32768 \\
 \end{array}
 \]

 (b) RK’s method table. RK uses

 \[
 k_1 = f(t, y(t)) \quad k_2 = f(t+h/2, y(t)+k_1h/2) \quad k_3 = f(t+h/2, y(t)+k_2h/2) \quad k_4 = f(t+h), y(t)+k_3h
 \]

 \[
 \text{avg } y' = (k_1 + 2k_2 + 2k_3 + k_4)/6
 \]

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
 t & y(t) & k_1 & k_2 & k_3 & k_4 & \text{avg } y' & \Delta y & y(t + h) \\
 \hline
 0 & 0 & 1 & 1.062500000 & 1.070556641 & 1.218132667 & 1.080707658 & 0.5403538290 & 0.5403538290 \\
 0.5 & b & 1.291982260 & 1.745372176 & 1.953936782 & 1.634010036 & 1.720768369 & 0.8603841845 & 1.400738014 \\
 \end{array}
 \]

 \(b \) is used here for 0.5403538290 so the table will fit on the page.