Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. Fun loving Fred is spiking the fruit punch with rum. Initially the punch bowl has 100 cups of alcohol free fruit punch which is being consumed at 2 cups per minute. Fred is pouring rum which is 50% alcohol (by volume) also at 2 cups per minute into the punch bowl. The punch is well stirred at all times.
(a) Write an IVP for $q(t)$, the amount of alcohol in the punch bowl (do NOT solve).
(b) We change the problem slightly, instead of 2 cups per minute output, the fruit punch is consumed at 3 cups per minute. Write and SOLVE an IVP for $V(t)$, the volume of fluid in the punch bowl.
(c) Write an IVP for $q(t)$, the amound of alcohol in the punch bowl, in the face of this faster consumption (do NOT solve).
2. Solve the IVP problems:

$$
\begin{array}{ll}
\text { (A) } y^{\prime}=\frac{3 x^{2}-e^{x}}{2 y-5} & y(0)=1 \\
\text { (B) } y^{\prime}+2 y=t e^{-2 t} \quad y(1)=0
\end{array}
$$

3. True or False and a brief reason why or why not.
(a) The IVP $y^{\prime}+x^{2} y \sqrt{x}=\ln x, y(0)=5$ is non-linear.
(b) The ODE $\left(y^{\prime}\right)^{5}+y^{\prime \prime \prime}-\sqrt{y^{\prime \prime} y}=\sin (\cos t)$ is fifth order.
(c) The ODE $M(x, y)+N(x, y) d y / d x=0$ is exact if $\partial N / \partial y=\partial M / \partial x$.
(d) The function $e^{2 t}$ is a solution to $y^{\prime}-e^{-4 t} y^{3}=e^{2 t}$.
(e) The function $\sin t / t$ is a solution to $t y^{\prime}+y=\cos t$.
(f) There is a first order ODE $y^{\prime}=f(t, y)$ so that $y_{1}(t)=t,-5<t<5$ is the solution with the initial condition $y_{1}(0)=0$ and $y_{2}(t)=1-t,-5<t<5$ is the solution with the initial contition $y_{2}(0)=1$.
(g) If $f(a)=0$ and $f^{\prime}(a)>0$ then $y=a$ is a stable equilibrium solution to the autonomous $y^{\prime}=f(y)$.
(h) The IVP $y^{\prime}(t)=y^{1 / 3}, y(0)=y_{0}$ has a unique solution if $y_{0} \neq 0$.
(i) Euler's method is usually better than Runge-Kutta.
(j) If the step size is $1 / 10$, the initial value $y(1)=1$ and the ODE is $y^{\prime}=1+y^{2}$, then the next point on the solution (according to Euler) is $y(1.1)=3$.
4. The graph of $f(y)$ is pictured below. For the autonomous ODE $\frac{d y}{d t}=f(y)$, determine the critical (equilibrium) points, and classify each one as stable, unstable or semistable. Draw the phase line and sketch several graphs of solutions in the ty-plane. (At least one in each "region" of the phase line, and get the inflection points correct. (Yes there is a local min at G.))

