MAP 2302 Diff-E-Qs

Directions: Show **ALL** work for credit; Give **EXACT** answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. For the inhomogenuous equations A-E complete a table like the one below. In the first column is the letter A-E, in the second column write the general solution to the associated homogenuous problem and in the third column give the correct "guess" for a particular solution using the method of undetermined coefficients. Do NOT solve.

Equation Letter	Gen Homo Solution	Undetermined Coeff "Guess"
A,B,C,D or E	?	?

$y'' - 5y' + 6y = \sin t$	(A)
$y^{\prime\prime} - 2y^{\prime} + 2y = t^3$	(B)
$y'' - 6y' + 9y = e^{3t}$	(C)
$y'' + 2y' - 15y = e^{3t}$	(D)
$y' = e^{-2t} \sin 5t$	(E)

- 2. Use variations of parameters to find a particular solution to $y'' + p(t)y' + q(t)y = t^5$ if $y_1(t) = 1/t$ and $y_2(t) = t^3$ are solutions to the associated homogenuous equation.
- 3. True or False and a brief reason why or why not.
 - (a) The ODE $y'' + \sqrt{xy'} 3x^2e^xy = 3x^x$ is linear.
 - (b) The characteristic equation of a second order linear ODE with constant coefficients always has real roots (sometimes equal, sometimes unequal).
 - (c) If the Wronskian of f(t) and g(t) is non-zero at one point t_0 , then the Wronskian is non-zero for every point t.
 - (d) The identically zero function is always a solution to any linear homogenuous ODE.
 - (e) If you multiply the mass m of an undamped spring-mass system by four, the the natural frequency ω is reduced by one half.
 - (f) If you increase the γ of a critically damped spring-mass system, it becomes overdamped.
 - (g) Resonance only happens with forced systems, not with free systems.
 - (h) If $y_1(t)$ and $y_2(t)$ are both solutions to the linear ODE $L[y] = t^2 + 1$ then so is $y_1(t) + y_2(t)$.
 - (i) If $y(t) = 5000e^{-2t}\sin(5t) + 10^6e^{-2t}\cos(5t) + 17\cos(50t)$ is the solution to a forced damped springmass system, then $17\cos(50t)$ is the transient solution.
 - (j) The functions $\sin^2 t$ and $\cos^2 t$ are linearly independent.
- 4. A undamped spring-mass system uses a 2 kg mass and a spring which is elongated 1/8 m when a 1 N force is appled. The system is forced by $g(t) = (42/100) \sin(5t)$ N find the solution with initial values y(0) = 0 and y'(0) = 1/10.