Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. For the inhomogenuous equations $A-E$ complete a table like the one below. In the first column is the letter $A-E$, in the second column write the general solution to the associated homogenuous problem and in the third column give the correct "guess" for a particular solution using the method of undetermined coefficients. Do NOT solve.

Equation Letter	Gen Homo Solution	Undetermined Coeff"Guess"
A, B, C, D or E	$?$	$?$

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =\sin t \tag{A}\\
y^{\prime \prime}-2 y^{\prime}+2 y & =t^{3} \tag{B}\\
y^{\prime \prime}-6 y^{\prime}+9 y & =e^{3 t} \tag{C}\\
y^{\prime \prime}+2 y^{\prime}-15 y & =e^{3 t} \tag{D}\\
y^{\prime} & =e^{-2 t} \sin 5 t \tag{E}
\end{align*}
$$

2. Use variations of parameters to find a particular solution to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=t^{5}$ if $y_{1}(t)=1 / t$ and $y_{2}(t)=t^{3}$ are solutions to the associated homogenuous equation.
3. True or False and a brief reason why or why not.
(a) The ODE $y^{\prime \prime}+\sqrt{x} y^{\prime}-3 x^{2} e^{x} y=3 x^{x}$ is linear.
(b) The characteristic equation of a second order linear ODE with constant coefficients always has real roots (sometimes equal, sometimes unequal).
(c) If the Wronskian of $f(t)$ and $g(t)$ is non-zero at one point t_{0}, then the Wronskian is non-zero for every point t.
(d) The identically zero function is always a solution to any linear homogenuous ODE.
(e) If you multiply the mass m of an undamped spring-mass system by four, the the natural frequency ω is reduced by one half.
(f) If you increase the γ of a critically damped spring-mass system, it becomes overdamped.
(g) Resonance only happens with forced systems, not with free systems.
(h) If $y_{1}(t)$ and $y_{2}(t)$ are both solutions to the linear ODE $L[y]=t^{2}+1$ then so is $y_{1}(t)+y_{2}(t)$.
(i) If $y(t)=5000 e^{-2 t} \sin (5 t)+10^{6} e^{-2 t} \cos (5 t)+17 \cos (50 t)$ is the solution to a forced damped springmass system, then $17 \cos (50 t)$ is the transient solution.
(j) The functions $\sin ^{2} t$ and $\cos ^{2} t$ are linearly independent.
4. A undamped spring-mass system uses a 2 kg mass and a spring which is elongated $1 / 8 \mathrm{~m}$ when a 1 N force is appled. The system is forced by $g(t)=(42 / 100) \sin (5 t) \mathrm{N}$ find the solution with initial values $y(0)=0$ and $y^{\prime}(0)=1 / 10$.
