Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a SEPARATE page; Use only ONE side of each page; Be neat; Leave margins on the left and top for the STAPLE; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

1. For the ODE $(x-\pi)^{2}(5-x) y^{\prime \prime}+\sin (x) y^{\prime}+y /\left(1+x^{2}\right)=0$
(a) Find all singular points and determine if whether each is regular or irregular.
(b) Determine a lower bound to the radius of convergence of the series solution about each given point $x_{0}: x_{0}=0, x_{0}=7$, and $x_{0}=4$
2. Find the inverse Laplace transform of

$$
\frac{7}{s^{2}-5 s+6}+2 e^{-\pi s} \frac{s+5}{(s+2)^{2}+3^{2}}-e^{-5 s} \frac{1}{(s-2)^{4}}
$$

3. True or False and a brief reason why or why not.
(a) The ODE $(x-\pi)^{2}(5-x) y^{\prime \prime}+\sin (x) y^{\prime}+y /\left(1+x^{2}\right)=0$ is linear.
(b) The radius of convergence of $\sum_{n=0}^{\infty} 3^{n} x^{n}$ is 3 .
(c) If $c>0$, then $u_{c}(t)=\int_{0}^{t} \delta(s-c) d s$.
(d) $\sum_{n=0}^{\infty}(i x)^{n} / n!=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} /(2 n)!+i \sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} /(2 n+1)$!
(e) For constants a and b and for $t \geq 0$ the solutions to the IVP $y^{\prime \prime}+a y^{\prime}+b y=0, y(0)=0, y^{\prime}(0)=1$ and the IVP $y^{\prime \prime}+a y^{\prime}+b y=\delta(t), y(0)=0, y^{\prime}(0)=0$ are the same.
(f) For all $t,|t|=t u_{0}(t)-t$.
(g) $\sum_{n=7}^{\infty}\left(n^{2}-n+2\right) a_{n-3} x^{n+1}=\sum_{n=9}^{\infty}\left(n^{2}-5 n+8\right) a_{n-5} x^{n-1}$
(h) The function $y(t)=u_{5}(t)(t-5)-u_{7}(t)(t-7)$ is continuous for every t.
(i) The general solution to $x^{2} y^{\prime \prime}+2 x y^{\prime}+2 y=0$ is $C_{1} x^{-1} \cos (\ln x)+C_{2} x^{-1} \sin (\ln x)$
(j) If $y_{1}(0)=1, y_{1}^{\prime}(0)=0$ and $y_{2}(0)=0, y_{2}^{\prime}(0)=1$ and $y_{1}(t)$ and $y_{2}(t)$ are both solutions of $y^{\prime \prime}+y^{\prime}+y=0$, then their Laplace transforms satisfy $Y_{1}(s)=s Y_{2}(s)$.
4. Find the first five non-zero terms of the series solution about $x_{0}=0$ to the IVP $y^{\prime \prime}-x y=0, y(0)=$ $5, y^{\prime}(0)=7$.
