Directions: Show ALL work for credit; Give EXACT answers when possible; Start each problem on a **SEPARATE** page; Use only **ONE** side of each page; Be neat; Leave margins on the left and top for the **STAPLE**; Calculators can be used for graphing and calculating only; Nothing written on this page will be graded;

- 1. For the ODE $(x \pi)^2 (5 x)y'' + \sin(x)y' + y/(1 + x^2) = 0$
 - (a) Find all singular points and determine if whether each is regular or irregular.
 - (b) Determine a lower bound to the radius of convergence of the series solution about each given point $x_0: x_0 = 0, x_0 = 7, \text{ and } x_0 = 4$
- 2. Find the inverse Laplace transform of

$$\frac{7}{s^2 - 5s + 6} + 2e^{-\pi s} \frac{s + 5}{(s + 2)^2 + 3^2} - e^{-5s} \frac{1}{(s - 2)^4}$$

- 3. True or False and a brief reason why or why not.
 - (a) The ODE $(x \pi)^2 (5 x)y'' + \sin(x)y' + y/(1 + x^2) = 0$ is linear.
 - (b) The radius of convergence of $\sum_{n=0}^{\infty} 3^n x^n$ is 3.

 - (c) If c > 0, then $u_c(t) = \int_0^t \delta(s-c) \, ds$. (d) $\sum_{n=0}^\infty (ix)^n / n! = \sum_{n=0}^\infty (-1)^n x^{2n} / (2n)! + i \sum_{n=0}^\infty (-1)^n x^{2n+1} / (2n+1)!$
 - (e) For constants a and b and for $t \ge 0$ the solutions to the IVP y'' + ay' + by = 0, y(0) = 0, y'(0) = 1and the IVP $y'' + ay' + by = \delta(t), y(0) = 0, y'(0) = 0$ are the same.
 - (f) For all t, $|t| = tu_0(t) t$.
 - (g) $\sum_{n=7}^{\infty} (n^2 n + 2)a_{n-3}x^{n+1} = \sum_{n=9}^{\infty} (n^2 5n + 8)a_{n-5}x^{n-1}$
 - (h) The function $y(t) = u_5(t)(t-5) u_7(t)(t-7)$ is continuous for every t.
 - (i) The general solution to $x^2y'' + 2xy' + 2y = 0$ is $C_1x^{-1}\cos(\ln x) + C_2x^{-1}\sin(\ln x)$
 - (j) If $y_1(0) = 1$, $y'_1(0) = 0$ and $y_2(0) = 0$, $y'_2(0) = 1$ and $y_1(t)$ and $y_2(t)$ are both solutions of y'' + y' + y = 0, then their Laplace transforms satisfy $Y_1(s) = sY_2(s)$.
- 4. Find the first five non-zero terms of the series solution about $x_0 = 0$ to the IVP y'' xy = 0, y(0) =5, y'(0) = 7.