MAD 3401 — Introductory Numerical Analysis

Section 1, Spring 1994.

Instructor: Bellenot.

The good doctor's Office: 002-B Love, Office Hours: MWF 9:20-10:00 or by appointment.

Eligibility: A grade of C- or better in Calculus 2 (MAC 3312) and knowledge of a high level programming language such as C, Pascal or FORTRAN.

Text: K. Atkinson Elementary Numerical Analysis 2nd Edition.

Coverage: Chapters 1 - 7.

Final: At 10-12 Thursday Apr 28, 1994.

Tests: (3) Tentatively at Jan 26, Feb 23(Mar 2?) and Apr 13. No Makeup tests.

Programming Projects: Due every Wednesday (except test days). Many of the projects will use Maple.

Grades: 90% A, 80% B, 70% C, 60% D.

Relative Weights F = 2T and T = P (F is 1/3, each T is 1/6 and P is 1/6).

Homework and Attendance are required.

Maple Input:

```
p1(x) := convert(taylor (sin(x), x=0, 2), polynom);

p3(x) := convert(taylor (sin(x), x=0, 4), polynom);

p5(x) := convert(taylor (sin(x), x=0, 6), polynom);

plot( \{sin(x), p1(x), p3(x), p5(x) \}, x=-5..5, y=-3..3);
```

```
> q:=x->b0+b1*x+b2*x^2+b3*x^3;
                        q := x -> b0 + b1 x + b2 x + b3 x
> r:=unapply(diff(q(x), x),x);
                          r := x \rightarrow b1 + 2 b2 x + 3 b3 x
> f:=x->E^x;
                                    f := x \rightarrow E
> g:=unapply(diff(f(x),x),x);
                                   g := x -> E
> t:=unapply(convert(taylor(f(x),x=0,4),polynom),x);
                         t := x \rightarrow 1 + x + 1/2 x + 1/6 x
> solve({q(0)=f(0),r(0)=g(0),q(2)=f(2),r(2)=g(2)}, {b0,b1,b2,b3});
                  \{b0 = 1, b1 = 1, b3 = 1/2, b2 = -7/4 + 1/4 E\}
> assign(");
> q(x);
                       1 + x + (-7/4 + 1/4 E) x + 1/2 x
> plot(\{t(x)-f(x),q(x)-f(x)\}, x=-0.5..2.5);
```

```
#include <stdio.h>
typedef float Real;
typedef Real DecFun(int);
class DecFunSums
{
private:
        DecFun * fun;
        DecFun * sum;
public:
        DecFunSums ( DecFun * f, DecFun * g ) { fun = f; sum = g; }
        Real sumLS ( int n );
        Real sumSL (int n);
        Real sumT ( int n );
};
Real DecFunSums::sumSL ( int n )
{
        int m;
        Real answer = 0.0;
        for ( m = n; m > 0; m-- )
                answer += fun ( m );
        return answer;
}
Real DecFunSums::sumLS ( int n )
{
        int m;
        Real answer = 0.0;
        for ( m = 1; m \le n; m++ )
                answer += fun (m);
        return answer;
}
Real DecFunSums::sumT ( int n )
{
        return sum ( n );
}
inline Real a (int n) { return 1.0/((Real) (n*(n+1))); }
inline Real aAns ( int n ) { return ((Real) n)/((Real) (n+1)); }
int indices[] = {10, 50, 100, 500, 1000};
main()
{
        DecFunSums A(a, aAns);
        for ( int i = 0; i < 5; i++ )
                printf ( "%d
                                %.91f
                                        %.91f
                                                %.91f
                                                        %.91f\n",
                        indices[i], A.sumLS (indices[i]),
                        A.sumSL (indices[i]), A.sumT (indices[i]), a(indices[i]));
        for (i = 0; i < 20; i++)
                printf ( "%d %.91f %.91f %.91f\n", i, A.sumLS ( i ),
                        A.sumSL ( i ), A.sumT ( i ) );
}
```

Show ALL work for credit; be neat; and use only ONE side of each page of paper.

- 1. Find the error estimates:
 - A. Calculate the error in the approximation $x_A \approx x_T$, if $x_T = 28.254$ and $x_A = 28.271$.
 - B. Calculate the relative error for the numbers in Part A.
 - C. Calculate the number of significant digits for the numbers in Part A.
 - D. Suppose x_T and y_T round to x = 1.223 and y = 1.14, find the smallest interval estimate for the true value of x * y.
 - E. For the numbers in Part D, find the smallest interval estimate for the true value of x y.
- 2. Use Newton's method to find the cube root of 2.
 - A. Write a polynomial function f(x) so that the root of f(x) is $2^{\frac{1}{3}}$.
 - B. Write the Newton's formula for this particular f(x) which yields x_{n+1} in terms of x_n
 - C. Starting from $x_0 = 2$ do two iterations of the formula in B.
- 3. Consider the function $g(x) = (x^2 5)/4$
 - A. Find both fix points of g(x).
 - B. For each fix point α determine if iterates of the form $x_{n+1} = g(x_n)$ will converge to α provided x_0 starts close enough to α .
- 4. The initial interval for the bisection method has length $b-a=2^{-1}$, how many iterations are necessary to get the interval to length 10^{-9} ? Suppose the same problem (which has root α ,) when using Newton's method, starts with $|\alpha x_0| = 2^{-1}$, and the estimate $\alpha x_{n+1} = (\alpha x_n)^2$ is true. How many iterations of Newtons method are needed to get within 10^{-9} ?
- 5. Derive the secant method, let f(x) be given.
 - A. Given x_n and x_{n-1} find the equation of the secant line passing through the points $(x_n, f(x_n))$ and $(x_{n-1}, f(x_{n-1}))$.
 - B. Solve your equation above for x_{n+1} .
- 6. Suppose your computer does '4 digit decimal arithmetic' and it rounds. Suppose $x_1 = y_1 = 0.2$; $x_i = 0.00004$ for i > 1 and $y_i = 0.00007$ for i > 1. Compute $\sum_{i=1}^{1001} x_i$ and $\sum_{i=1}^{1001} y_i$ using your computer both by LS (Largest to Smallest) and SL. Give the errors from the true sums.
- 7. Suppose f(x) is a function with a zero at $x = \alpha$ and $f'(\alpha) \neq 0$. Suppose x_n is obtained by Newton's method starting from some x_0 which is near α . Show $(\alpha x_{n+1}) = M(\alpha x_n)^2$ by doing the following.
 - A. First expand f(x) as a Taylor polynomial (of degree one) with remainder about $x = x_n$.
 - B. Substitute $x = \alpha$, use $f(\alpha) = 0$, and divide by $f'(x_n)$.
 - C. Use Newton's formula for x_{n+1} to obtain your answer.
 - D. Find M.
- 8. Write a Maple procedure bisect which uses the bisection method to find a root. The procedure repeats the bisection until it find an answer within 10^{-6} of the root. The procedure bisect is called with parameters (f, a, b) where f(x) is the function in question, a < b are real numbers so that f(a)*f(b) < 0. If you need it, the syntax of the Maple if statement is given below, (statements between [] are optional).

```
if conditional-expression then statement-sequence
[ elif conditional-expression then statement-sequence ]
[ else statement-sequence ]
fi
```

Show **ALL** work for credit; be neat; and use only **ONE** side of each page of paper.

- 1. Consider the integral $I(f) = \int_0^1 f(x)dx$. A. Find the estimate $T_4(f)$ for I(f).

 - B. Find the estimate $S_4(f)$ for I(f).
- 2. Consider the data points $\{(1,2),(2,1),(3,3)\}$
 - A. Find the piecewise linear interpolating polynomial for the data.
 - B. Find the quadratic interpolating polynomial for the data.
- 3. Write the requested polynomial.
 - A. The Lagrange interpolation basis polynomial which is zero at x=2, x=3 and x=5 but one at
 - B. The Chebyshev polynomials $T_n(x)$ for n=0,1,2 and 3 in terms of x.
- 4. Consider the integral I(f) = ∫₀¹ f(x)dx.
 A. Bound the error E_n^T(f) if the trapezoidial rule with n = 10 is used to estimate I(f).
 B. Bound the error E_n^S(f) if Simpson's rule with n = 10 is used to estimate I(f).
- 5. A minimax polynomial p(x) of degree 5 is use to approximate $\sin x$ for $0 \le x \le \pi/4$. Estimate the maximum error $|\sin x p(x)|$. The estimates $\pi^2 < 10$ and $2^{10} \dot{=} 10^3$ may be used.
- 6. Suppose t(x) = -t(-x) and for positive $x, t(x) = \pi/2 t(1/x)$. Using these identites what smaller interval can be used to approximate $t(x), -\infty < x < \infty$? Give an algorithm for reducing the evaluation of t(x) to this smaller interval, assume the polynomial p(x) is a good approximation to t(x) on this smaller interval.
- 7. Find the cubic polynomial p(x) which satisfies $p(x_0) = p(x_1) = p'(x_1) = 0$, but $p'(x_0) = 1$.
- 8. Show $f[x_0, x_1] f'((x_0 + x_1)/2) = h^2 f'''(z)/6$ Hints: Let z be the midpoint and let $z + h = x_1, z h = x_0$; and expand f in a Taylors series for $f(z \pm h)$ about z.

```
#include <stdio.h>
 union {
int i;
 char c[4];
 } j;
 union {
 float f;
 char c[4];
 } g;
 union {
 double d;
 char c[8];
 } x;
 void byteInHex(char c)
 {
         char top = '0' + ((c >> 4) \& 0xf);
         char bot = '0' + (c \& 0xf);
         if (top > '9')
                 top = top - ':' + 'a';
         if ( bot > '9' )
                 bot = bot - ':' + 'a';
         printf ( " %c%c", top, bot );
 }
/ void print_j(void )
         int k;
         printf ( "%d", j.i );
         for (k = 0; k < 4; k++)
                 byteInHex ( j.c[k] );
         printf ( "\n" );
 }
 void print_g(void )
         int k;
         printf ( "%f", g.f );
         for (k = 0; k < 4; k++)
                 byteInHex ( g.c[k] );
         printf ( "\n" );
 }
 void print_x(void )
 {
         int k;
         printf ( "%lf", x.d );
         for (k = 0; k < 8; k++)
                byteInHex ( x.c[k] );
         printf ( "\n" );
main()
         int i;
```

```
float half = 1.0/2.0;
/*
        printf ( "Integer\n" );
        for (i = 0; i < 32; i++)
        {
                j.i = 1 << i;
                print_j();
        }
*/
        printf ( "Float\n" );
        g.f = 1.55;
        print_g();
        g.f = 3.55;
        print_g();
        printf ( "Double\n" );
        x.d = 1.55;
        print_x();
        x.d = 3.55;
        print_x();
/*
        for ( i = 0; i < 32; i++ )
        {
                g.f += half;
                print_g();
                half /= 2.0;
        }
*/
/*
        printf ( "Double\n" );
        for (i = 0; i < 32; i++)
        {
                x.d = 1 << i;
                print_x();
        }
*/
}
```