Performance of a Riskfree Time Warp Operating System
Steven Bellenot
Mathematics Department
Florida State University .
Tallahassee, FL 32306
bellenot@math.fsu.edu

ABSTRACT

Optimistic methods of synchronizing parallel dis-
crete event simulations can be risky by sending (pos-
itive) messages (events) before they have been com-
mitted. Risky methods often use anti-messages (nega-
tive messages) to cancel incorrectly sent positive mes-
sages. Riskfree methods are more conservative, they do
not send messages until they are known to be correct.
The Time Warp Operating System (TWOS) uses anti-
messages. Riskfree TWOS is implemented and tested on
the standard TWOS benchmarks. Performance of the
riskfree TWOS is dependent on the amount of looka-
head in the simulation. Good lookahead was required
for even reasonable performance. Tracker, a simulation
of the riskfree simulation, is used to give idealized best
case riskfree performance. BeRisky is an example simu-
lation which has a speedup of n for Time Warp, but only
a speedup of 2 for riskfree methods.
Introduction

We refer the reader to {F90] for an introduction to
parallel discrete event simulation, and to where unde-
fined terms can be found. The Time Warp Operating
System (TWOS) is the operating system implementa-
tion of Time Warp [JBW87] done at the Jet Propulsion
Laboratory (JPL). Time Warp is a method of optimisti-
cally synchronizing parallel discrete event simulations.

An optimistic mechanism can also be risky in the
sense of [R88]. Execution of event can generate events
(messages) for other objects. Risky simulation methods
immediately send these messages. A risky method must
provide a mechanism, often anti-messages or negative
messages, to unsend an incorrect (positive) message. A
optimistic method can be riskfree just by not sending
messages until it is certain they are correct. TWOS is
risky and SPEEDES ([S91] and [S92]) is a riskfree op-
timistic method. (The name SPEEDES'is changed to
breathing time buckets in [S92], but we will use the old
name in this paper.) Steinman in [S92] adds an aggres-
sive cancellation version of Time Warp to the riskfree
SPEEDES and compares their performance. Here we do
a similar exercise with TWOS. We implement a riskfree
version of TWOS and compare it to the regular risky
TWOS. Riskfree TWOS is not synchronous like the risk-
free method in SPEEDES.

Generally, the performance of the riskfree TWOS
was poor. We show that some simulations like BeRisky
below will not run well with any riskfree method. We find

that good riskfree performance for the JPL benchmarks
requires good lookahead in the simulation. The looka-
head of an object is the min(r(m) — s(m)) as m ranges
over the messages it schedules. (r(m) = virtual receive
time, and s(m) = virtual send time.) A simulation
has good lookahead if the lookahead value is large com-
pared to the usual event spacing. Riskfree TWOS ran
best when the list of uncommitted events was long (in
terms of CPU time) and new events were scheduled at
times which put them near the end of these uncommit-
ted events. (Or in the language below, successive event
horizons must contain lots of simulation work.) This par-
ticular implementation of a riskfree TWOS is slowed by
using the usual TWOS code to compute GVT. To fac-
tor out this limitation, Tracker, a simulation of riskfree
simulations was created.
The Event Horizon

The event horizon is a term from SPEEDES, but it
has meaning in a sequential simulation. At a given sim-
ulation time 7T, the event horizon is the virtual time of
the earliest event generated by an executing an event at
virtual time 7" or greater. The main loop of SPEEDES
executes object until the next event horizon is known.
Once all nodes know the new event horizon, all output
messages with send time less than the new event horizon
are sent. Due to the nature of its sending mechanism,
all nodes will know when all messages have been safely
received. The object execution resumes to determine the
next event horizon. In SPEEDES, the sequence of event
horizons is repeatable and can be determined from a se-
quential run. The calculating the event horizon has a lot
in common with calculating global virtual time (GVT) in
TWOS. But the next event horizon calculation requires
the all events with virtual time less than the new event
horizon be completed, where as a GVT calculation can
be done at anytime.
Tracker

In light of the limitations of our riskfree TWOS we
designed and implemented Tracker. Tracker simulates a
no overhead SPEEDES simulation. Tracker has one de-
lay parameter which makes it also a simulation of our
riskfree TWOS. Tracker requires two steams of input
data which we collected in to separate runs of the se-
quential simulator. One run just collected a list of all
messages (events) send during the simulation. The other
run collected event execution times. Tracker assumes

165

there is no other run time overhead. Tracker interrupts
events in progress if an earlier event becomes available.
The list of Tracker assumptions is given below.
Tracker Assumptions
1. The event execution real time is the same for early
(wrong) executions as it is for the correct (sequen-
tial) event execution time.
2. Event horizons are calculated ”exactly” at the in-
stant they can be known. The delay to spread this
event horizon to the nodes is the Tracker parameter
commit delay.
. There is no synchronization overhead and messages
have zero communication delay time.
Effect of the commit delay parameter in Tracker
Between the real time the event horizon is known
and the time all the nodes learn the new event horizon
could be called the twilight zone. This time difference is
called the commit delay. While in the twilight zone, each
node is executing events which could be rolled back. If
there is not enough events available to execute, this twi-
light zone of time will be idle CPU time. That is if the
commit delay parameter is large enough, then Tracker
(and a riskfree simulation) will run out of simulation
work to do while waiting for the new event horizon. Idle
CPU time, if long enough, would rob the simulation of
any speed up. The estimated commit delay for the cur-
rent riskfree TWOS implementation is very high, around
30 — 60 milliseconds for 10 — 70 nodes (see Ping below).
This long commit delay can lead to idle CPU time.
The BeRisky simulation
The BeRisky simulation consists of n objects named
0 through n—1. Each object only sends messages to itself
and every event execution takes the same amount of real
CPU time. At time ¢ * n + j, object j sends a messages
to itself at time ¢*n+ j+ 1. And at timei%n 4 j+ 1
object j sends a message to itself at time (i + 1) * n + 5.
Time Warp (and conservative methods) have no prob-
lem (in theory) of obtaining the full n-fold parallelism
of BeRisky. However, at each virtual time T, the next
event horizon is 7'+ 1. Hence a riskfree simulation could
at most obtain only a two fold parallelism. As a model
this simulation is really the same as n objects which at
time T just send a message to itself at a time 7'+ L in
the future. Here all the objects are synchronized to the
virtual time axis and in theory the riskfree method could
obtain the n-fold parallelism of the new simulation. (See
also Pucks below.)
Riskfree TWOS implementation

The two main changes to TWOS needed to make
it riskfree were to eliminate anti-messages and changes
to GVT. The original code modifications was done by a
student Pi-chiang Chang. Actually anti-messages were
kept and positive messages were removed from the code.

(]

.
The changes to GVT are less clear cut, and we tried
several approaches. A modified request scheme was fi-
nally implemented. Since in TWOS a GVT calculation
is always started by node zero. Node zero became the
only node which would start a GVT on demand. When
a node, say number ¢ > 0, wanted to request a GV'T,
it would instead pass its request along with its current
estimate of the next event horizon to the node numbered
(14 1)/2 — 1. This lower numbered node would incorpo-
rate the received upper bound on the next event horizon
into its own current estimate. If the received estimate
was lower than the receiving node’s estimate, then the
receiving node might discover it was executing events be-
yond its new idea of the next event horizon and in turn
request a GVT.
Benchmark Performances

All measurements were made on JPL’s BBN Butter-
fly GP-1000. TWOS version 2.7 was the baseline. The
three standard JPL benchmarks of Pucks, STB88 and
Warpnet were measured as well as two artificial simu-
lations Ping and Bank. Summary statistics and refer-
ences for these simulations are in [B92]. The results for
STB88 are omitted, they were between those of Pucks
and Warpnet.

Ping Benchmark

There are two objects in Ping, and the simulation
has one message which bounces back and forth. Figure 1
shows the run times of Ping when run by TWOS, when
run by riskfree TWOS and a logarithm curve which fits
this second plot. Note that there is no parallelism avail-
able in Ping, it is a sequential simulation. For SPEEDES
and riskfree TWOS, every message is a new event hori-
zon. This Ping sent 2500 messages and so there were
2500 event horizon calculations in the riskfree TWOS.
TWOS on the other hand does almost no GVT calcula-
tions since Ping runs so fast. Ping is used to estimate
the GVT calculation time (roughly 14In(z) milliseconds,
where z is the number of nodes) and hence the event
horizon commit delay time for use in Tracker.
Pucks Benchmark

Figure 2 shows the comparison in run times of Pucks
when run by TWOS and when run by riskfree TWOS.
The poor performance of the riskfree Pucks was ex-
pected. Figure 3 shows Tracker run times with Pucks.
(The length of the Pucks benchmark was shorted for
these figures, usual Pucks is ten times longer than the
Pucks in Figure 2 and forty times longer than the Pucks
in Figure 3.) Even the case with no commit delay, the
idealized no overhead run times are twice as long as an
actual TWOS run times. With a commit delay of 10
milliseconds, speed up drops by almost one fifth. And
with the actual riskfree TWOS estimated delays, Tracker
Pucks runs slower as the number of nodes increase.

156

Ping ~— Run Time versus Number of Nodes
160 v T T

T v ¥
ot

140)_--a—/" i
120 | 4/ E
100 /’ ..
THOS —+—

Riskfrea ~+—

Log curve s
[10 20 30 40 50 60 70 80

Number of Nodes (Processors)
Figure 1. Ping run times.

Pucks (short version) -— Run Time versus Number of Nodes
500 T T T T T Y T

450 1
400 | i
350 B
300 p) -
250 | u
200 P -1
150 b 1

100 b y
sof el
i o S

e e e e

0 1 1 1 1 i i 1

4 10 20 30 40 50 60 0 80
Number of Nodes {(Processors)

Riskfree — |
TWOS -+

Figure 2. Pucks run times.

Pucks (very short version} —- Tracker Run Time versus Number of Nodes
0 T T T T y T T

14*1n(nodes) ms delay ~+— -
10 millisecond delay ~+-—
no delay -@--
standard THOS -W—

e B " n i

A Mg M B R K
° 1 L L 1 : 1 '

o 10 20 30 40 50 60 70 80
Number of Nodes (Pracessors)

Figure 3. Tracker Pucks run times.

What does Pucks do that ruins the riskfree per-
formance? First Pucks has no lookahead. When two
puck objects collide, both pucks gain new velocity vec-

tors. Both pucks send information messages containing.
their new velocities to the sector(s) they are currently
in. These information messages are almost for now, they
are guaranteed to be the next events in the simulation.
The sector(s) respond to these information messages by
sending informational messages to its neighboring sec-
tors, cushions and the pucks in its sector. These infor-
mation messages are also almost for now, they are also
guaranteed to be the next events in the simulation. This
is a disaster for riskfree performance, there are.two event
horizons after every collision with essentially no simula-
tion work. Thus a riskfree Pucks essentially sequential-
izes the pucks collisions losing most of the parallelism.
We believe that Pucks with lazy cancellation TWOS
beats the critical path because of lazy cancellation’s abil-
ity to obtain temporal parallelism (See [RBJ91]). Pucks
is known to run 30 — 60% slower with TWOS with ag-
gressive cancellation [B89] for similar reasons. Although
Pucks is a disaster for SPEEDES, apparently other prox-
imity detection models can obtain a high degree of paral-
lelism [S92]. (But note the Time Warp which Steinman
uses to compares with SPEEDES uses the less than op-
timal aggressive cancellation.)
Warpnet Benchmark

We were surprised by the poor riskfree Warpnet per-
formance. Figure 4 shows the run time for Warpnet
comparing riskfree TWOS with TWOS. Events in Warp-
net only happen at integer virtual times and there is a
good. deal of parallelism available at each virtual time.
Howsever, the lookahead in Warpnet is poor. At most
virtual times T, there is an event scheduled for virtual
time T+ 1. The poor lookahead and the lengthy GVT
calculation times for riskfree TWOS lost this potential
parallelism.

Figure 5 shows the various Tracker speedups for
Warpnet, with various commit delay values compared
to the real TWOS and riskfree TWOS values. Note that
even the idealized no overhead no delay Tracker speedup
curve flattens before the actual TWOS speedup curve
peaks. Indeed at each increased level of commit delay
in the Tracker curve, has the Warpnet speedup curve
flatten earlier. When the commit delay is 14In(nodes)
the speedup becomes horizonal at about 36 nodes, essen-
tially the same shape as the real riskfree TWOS speedup
curve. These Tracker speedup curves were what we ex-
pected Warpnet would perform under riskfree TWOS.
The flattening of these Tracker speedup curves is due to
increased idle time, the simulation runs out of work to
do and most wait for the next event horizon for more
work.

Bank Benchmark

The Bank benchmark was introducted in [B92].
Each of the 16 bank objects reacts to a message by gen-

157

Warpnet -- Run Timae versus Number of Nodes
1200 T T T T

1000 - .

Rigskfree ~#—
THOS =

400 |

200 | \ i
-

B et S U

° I 1 x L 3 ! L

0 10 20 30 40 50 60 70 80
Number of Nodes (Processors)

Figure 4. Warpnet run times.

Warpnet -—- Tracker Speed Up versus Number of Nodes
30 T T T T T T T

Real TWOS -4—

Mo delay ~+--
10 millisecond delay -B-
25 + 14+*ln({nodes) ms delay -¥— -1
Real Riskfree -

et
P i o

15 + ~ ~ My W e Kyt]

10

— UG SRSV R)
L R SR D APRY QR S
5 ‘A-A-‘__.‘,_—.‘A—_,-_/“—'h—‘"“

0 1 1 ' I 1 i} 'l

[10 20 30 40 50 60 70 80
Kumber of Nodes (Processors)

Figure 5. Tracker Warpnet speedups.

erating a message with a random receiver and random
exponential interarrivial time with mean 10 (but see be-
low). We modified Bank so to discover if the riskfree
TWOS implementation could ever obtain parallelism.
Here is how we varied lookahead. The usual bank mes-
sage sent at time 7' arrives at T4+ D where D is an
exponential random variable with mean 10. A new bank
parameter of lookahead L changed this arrival time to
T+ L+ D where D is now an exponential random variable
with mean 10 — L. This changes the simulation slightly,
but the delta (interarrivial) time between send and re-
ceive times always has mean 10. Figure 6 shows the best
speedups we obtained for Bank. The message density
was 25 and the execution delay is 40 making the average
event execution time around 41 millieseconds. The best
riskfree Bank speedup was almost 9.5, the same simula-
tion using TWOS got a speedup over 13. Lookahead had
the biggest effect on banks riskfree performance.
Conclusions

Time Warp with lazy cancellation can obtain good

Bank -~ Speed Up (Message Dengity 25 Delay 40)
14 T T T T T T

THOS Lookahead 5 ——

TWOS Loockahead 3 =

12 THOS Lookahead 1 -8—
TWOS Lookahead 0 —4—

Riskfree Lookahead 5 -4-—

Riskfree Lookahead 3 -%--
10k Riskfree Lookahead 1 -
Riskfree Loockahead 0 —-

0 1 L 1 N 1 Il
12 14 16

8 10
Number of Nedes (procassora}

Figure 6. Best Bank speedups.

speedups with simulations with poor lookahead. Time

Warp can obtain the temporal parallelism available in

BeRisky and Pucks. Good lookahead is needed to ob-

tain good performance in riskfree simulation methods.

The TWOS benchmark suite, at least as constructed,

would likely have poor performance in any conservative

or riskfree simulation method.

References

[B89] S. Bellenot, Why is Pucks lazy?, JPL interoffice memo SFB:363-
89-005, (1989).

[B92] S. Bellenot, State Skipping Performance with the Time Warp
-Operating System, 6th Workshop on Parallel and Distributed
Simulation (PADS92), SCS simulation series 24 (1992), 53-61.

[F90] R. Fujimoto, Parallel Discrete Event Simulation, Communica-
tions of the ACM, 33 no 10 (1990), 30-53.

[JBW87] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M Di Loreto,

P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman, V. Warren,
J Wedel, H. Younger, and S. Bellenot, Distridbuted Simulation
and the Time Warp Operating System, Proc. 12th SIGOPS -
Symposium of Operating Systems Principles, 1987, 77-93.

[RFB90] P. Reiher, R. Fujimoto, S. Bellenot, and D, Jefferson, Cancel-

lation strategies in optimistic execution systems, Distributed
simulation 22,1 (1990) 112-121.

[R88] P. Reynolds, A Spectrum of Options for Parallel Simulation
Protocols, Proc of ACM Winter Simulation Conference, (1988),
325- 332. .

[891] J. Steinman, SPEEDES: Synchronous Parallel Environment for
Emulation and Discrete Event Simulation, Advances in Parallel
and Distributed Simulation, SCS simulation series 23, (1991) 95-
103.

[S92] J. Steinman, SPEEDES: A Unified Approach to Parallel Sim-
ulation, 6th Workshop on Parallel and Distributed Simulation
(PADS92), SCS simulation series 24 (1992), 75-84.

158

