s

Steven Bellenot

Department of Mathematics
Florida State University
Tallahassee, FL 32306-3027
bellenot@math.fsu.edu

Abstract

A Motif based graphical tool X Tracker is described.
XTracker can show Gannt-like charts of the activities
on each node or it can show the event messages as traf-
fic between simulation objects. X Tracker can take its
data from sequential simulation Tuns and simulate a
parallel ezecution under ¢ number of simulation meth-
ods. XTracker can act as a performance modeling tool.

Introduction

XTracker is an attempt to graphically visualize the
execution of a parallel simulation. XTracker has a
simplified view of a simulation, for example it as-
sumes there is no overhead, messages are infinitely
fast, and context switches take zero time. XTracker
shows graphically which object (if any) each node is
currenting executing at any real time. Rectangles rep-
resenting an object’s execution at a given virtual time
can have different colors. These colors are assigned
depending on if this execution is the final one at given
virtual time, or if it will be later be rollbacked and re-
executed. Like many graphical tools, XTracker allows
for re-scaling and has means of identifying boxes too
small to hold a text label. XTracker has another view
which shows the event messages as traffic between sim-
ulation objects. XTracker was.based on Tracker [2].

" As a motivation, suppose one has a correct simula-
tion which does not get good parallel speedup. One
would like to be able to use XTracker to view the paral-
lel execution and tell why it is not getting good paral-
lel performance. We have a couple of examples where
XTracker can find the problem (see parallelism and
pucks below).

As usual we assume a simulation is divided into sim-
ulation objects which schedule events for each other
via time-stamped messages. Casualty requires that
these events be executed in increasing virtual time or-
der. Parallel simulation methods usually assign sim-

“ulation objects to physical nodes which then execute

their potion of the simulation according to some sim-
ulation method.

XTracker currently only supports optimistic meth-
ods, but there is no reason it could not also support
conservative methods. For a good introduction to par-
allel discrete event simulation see [4].

While executing a parallel simulation, each proces-
sor does a number of activities which can be consid-

0-8186-7120-3/95 $04.00 © 1995 IEEE

191

XTracker, A Graphical Tool for Parallel Simulations

Li Duty

Department of Computer Science
Florida State University
Tallahassee, FL 32306-4019
ma@cs.fsu.edu

ered overhead. This overhead includes message traffic,
synchronization to preserve casualty, and state saving
overhead including GVT and fossil collection. (All of
the simulation object’s variables are stored in a data
structure called its state.) XTracker currently ignores
all of the above activities. XTracker views a simulation
as an execution of objects with no overhead and in-
finitely fast messages. XTracker does allow for events
to be preempted when an earlier time-stamped ap-
pears on a node.

Currently XTracker simulates three optimistic
methods, two risky methods in the sense of [8], and a
riskfree method like that in SPEEDES ([9] and [10}).
Execution of event can generate events (messages)
for other objects. Risky simulation methods imme-
diately send these messages. Thus an object execut-
ing in a wrong future could send a incorrect message
(positive message) which will need to be unsent.
risky method must provide a mechanism, often anti-
messages or negative messages, to unsend an incorrect
(positive) message. When a negative and positive mes-
sage meet in an object’s queue they annihilate each
other and rollback the object. A parallel simulation
method can be riskfree just by not couding messages
until it is certain they are correct, no . ~ti-messages -
are needed. The difference in XTracker’s two risky
methods is based on their cancellation strategies 7
which is either aggressive or lazy. '

We used the sequential simulator and the bench-
marks Pucks and Bank from the TWOS project. The
sequential simulator was used to generate the data files
needed by XTracker. The Time Waip Operating Sys-
tem (TWOS) is the operating system implementation
of Time Warp [5] done at the Jet Propulsion Labora-
tory (JPL).

The Simplified World of XTracker

XTracker uses three ascii input files: an event trace
file, a message log file and a configuration initialization
file. The event trace file has one line for each event
in the simulation. The format of the trace file is that
generated by the -t option to the TWOS sequential
simulator, but includes the virtual time, the objects
name, the amount of real cpu time used and a count
of the number of input and output messages. The
format of the msglog file is that generated by the -m
option to the TWOS sequential simulator, and has one

Obj | VT | RTime | Msgs (Dst@Receive Time)

A 1100 20 D@150 C@200 B@300

D | 150 20 D@250

C 1200 10 A@500

D | 250 20 none

B | 300 40 AQ@400

A | 400 10 A@500

A | 500 20 none

Table 1: The SE simulation.

line for each message listing the sender, the send time,
the receiver, the receive time and the message selector
an application defined message type. The format of
the configuration file is based on the configuration file
needed for TWOS. A shell script is used to massage
the above data into the format needed by XTracker.

XTracker simulates a parallel execution (under one
of the three methods above) and gives a simplified
view of how the parallel simulation might execute.
Only the “correct” events and messages are in the data
files XTracker uses. Thus XTracker cannot simulate
“wrong” events or messages, only “correct” ones that
are executed out of order. As all simulations, it might
not give realistic picture of any parallel execution of
the simulation. However, if a simulation is not over-
loading the overhead of a parallel execution, ther it is
likely that XTracker will give a reasonable picture of
this parallel execution. It is possible that the pictures
drawn by XTracker will be too complex to provide
simple answers.

XTracker as a teaching tool

We feel that XTracker has potential as an teach-
ing tool to illustrate how parallel simulations methods
execute. The simple example, SE, will also highlight
some of the features of XTracker. Consider the fol-
lowing simple simulation given by Table 1. In Table
1, the first column gives the objects name, the second
column the virtual time of the event, the next column
is the amount of real time needed to execute the event
and finally, the last column is a list of messages sent
in the form destination at receive time. So the first
line says object A executes at virtual time 100 for 20
units of real time and sends messages for object D at
virtual time 150, for object B at virtual time 200 and
for object C at virtual time 300. ,

The next two figures give snapshots of XTracker
on this simple example simulation. Figure 1 is the
aggressive method overview, note there are two exe-
cutions of object A at virtual time 500. The darker
color of the first indicates premature out-of-order ex-
ecution, where as the lighter color indicates in-order
or correct execution. The same simulation executed
using the riskfree method would have the out-of-order
execution for A at virtual time 500 at a later real time,
because the message from C at virtual time 200 can-
not be released until the event for D at virtual time
150 is done. (Object D could have sent a message to
C before virtual time 200, which could have made C
change its message to A.)

Figure 2 shows the message overview mode of

192

Figure 1: XTracker SE display for aggressive case.

ojace yoolix) m

Figure 2: XTracker SE message display.

XTracker. It shows all the messages between objects
showing the virtual times of sending and receiving.
For SE it shows the simulation structure at a glance.

X Tracker and Parallelism

Not all simulations are good candiates for parallel
execution. If a simulation is inheritly sequential, no
parallel method will make the simulation run signif-
icantly faster. Yet it is often hard to determine the
amount of parallelism in a given simulation. Consider
the benchmark Bank [1], with 8 objects bank.00 to
bank.07 and message density 1. In this simulation
there are 8 independent messages traveling from bank
to bank. When a message arrives, both its receiver
and receive time are randomly choosen and it is sent
onward until the receive time exceeds a cutoff time.

How much parallelism does this version of bank
have? Clearly it is less than 8, because one cannot ex-
pect the 8 messages to randomly spread over all 8 ob-
Jects. Mathematically, one can show if one puts 8 balls
into 8 boxes the expected number of non-empty boxes
is 5.25 and hence the parallelism is likely less than
5.25. Figure 3 shows XTracker’s display of this simu-
lation in overview mode, which shows all events. This
view is for aggressive cancellation. Figure 3 clearly
shows that bank-01 is a sequential bottleneck. The
maximal speedup is thus the sum of the execution
times divided by the sum of the bank 01 execution
times which is about 3.3. If we ignore the initializa-
tion phase at the start, the maximal speedup drops to
3.0.

Could we have predicted Figure 37 Another math-
ematical calculation about 8 balls into 8 boxes shows
that the expected number of balls in the box with the
most balls is 2.6 which is about 1/3 of 8. (Which
suggests a maximal speedup of 3.) At the onset at
least we can expect a third of the simulation to be
sequential. At least in the simulation of Figure 3, the
simulation never recovers from this initial imbalance.
(Overall bank.01 receives 15 of the 54 messages or
about 28% of the total.) Thus something which looks
on the face value might have lots of parallelism is eas-
ily shown to be much more problemmatic. Figure 3

)

et e WM UM 5K G WG M Nt L 10eK DWe DN MKE DB

Figure 3: XTracker display for Bank.

Figure 4: Riskiree Bank with Lookahead 0.

shows XTracker can find sequential roadblocks in par-
allel executions.

Riskfree Lookahead

The lookahead of an object is the minimum virtual
receive time minus the virtual send time of each mes-
sage (event) it schedules. A simulation has good looka-
head if the lookahead value is large compared to the
usual event spacing. Good lookahead is needed to get

ood performance in conservation simulation methods
4] and some optimistic methods [1]. In general, good
lockahead is a plus for any simulation method.

‘We have two figures to illustrate the value of looka-
head in the riskfree case. The simulation is bank as in
[1], this time with 64 messages or an message density
of 8. The first run, Figure 4, has lookahead of zero
(as does the run in Figure 3.). While the second run,
Figure 5, has a lockahead of 5.

Figure 5: Riskfree Bank with Lookahead 5.

193

Figure 6: Riskfree Bank Messages with Lookahead 0.

dret

i b

Dk 1

- 52

e 8

s s M

[

ok ¥

87

e . Y » » « "

Figure 7: Riskfree Bank Messages with Lookahead 5.

The difference in these two simulations runs by
XTracker are several. The most notable is the looka-
head 0 case takes over 15% longer to run than the
lookahead 5 cases. The two simulations are not the
same, the lookahead 0 case has more messages and
events (about 12%) more, but the sum of the event
run times is longer (about 4%) for the lookahead 5
case. We see more idle time in Figure 5, and more
events which will be rollback in Figure 4. The mes-
sage view of XTracker gives a good estimate of the
lookahead in this case. The lookahead 0 case, Figure
6, has vertical lines with very steep slopes; at least in
comparison with the slopes in Figure 7, the lookahead
5 case.

Assumptions made by XTracker in Simu-
lating Parallel Executions

XTracker makes many simplifications in how sim-
ulations act. Besides the no overhead kinds of things
mentioned before, there are significant assumptions on
how out-of-order object executions behave. Most of
these assumptions are cause by limitations in the data
that would be hard to overcome. That is, to be truly
accurate, one would have to collect kinds of data that
would be hard to obtain. XTracker gives increasingly
idealized views as it switches from riskfree to aggres-
sive to lazy methods.

Benchmark Performances

Next we tried XTracker on the Benchmark Pucks
[6]. This version of Pucks had the usual 128 sec-
tors and 48 cushions but only 14 pucks and all of the
XTracker drawings are done on 14 nodes, so that each
node has exactly one puck. This is an attempt to see

e W - ey P e e an ey 1o [U

Figure 9: Pucks — Aggressive,

if XTracker can find the well known differences of run-
ning Pucks under different simulation methods. In [1],
it is shown that Pucks is poorly designed for running
under a riskfree simulation method.

The next couple figures show the part of the
XTracker view of the Pucks simulation. Each figure
has the same scale and shows the same amount of real
time. Each figure is viewing the start of the simulation
of the same simulation object at virtual time 111.xx
on node 11. Figure 8 shows this XTracker drawing
for Pucks in the riskfree mode. Figure 9 show this
XTracker drawings for Pucks in the aggressive mode
with the same scale as Figure 8. Not only is the
amount of idle space much larger in Figure 8, but the
compute run time in Figure 8 is over 2 times longer
than either of the other risky methods.

Implementation and Conclusions

XTracker was implemented in C++ using Motif and
a toolkit described in a textbook by Douglas Young

194

[11]. This toolkit is example code from the text and is
publically available. XTracker was developed on Sun
Workstations using both SunOS 4.1.x and 5.x.

XTracker is an evolving graphic tool to help visu-
alize parallel simulation execution. It provides some
insight into the parallel workings of a simulation, per-
haps too improve performance. It its useful in study-
ing toy simulations and teaching simulation methods.
For the model writer, if can point out limits in paral-
lelism in some simulations. Also it can indicate which
parallel simulation method might produce the best
speedup for a given simulation.

References

[1] S. Bellenot, “State Skipping Performance with the
Time Warp Operating System,” 6th Workshop
on Parallel and Distributed Simulation (PADS92),
SCS simulation series Vol. 24, pp. 53-61, 1992.

[2] S. Bellenot, “Performance of a Risk Free Time
Warp Operating System,” 7th Workshop on Par-
allel and Distributed Simulation, SCS simulation
series PADS-93-1, pp. 155-158, 1993.

[3] R. Fujimoto, “Performance measurements of dis-
tributed simulation strategies,” Trans. Soc. for
Compul. Simul. Vol. 6,2, pp. 89-132, 1989.

[4] R. Fujimoto, “Parallel Discrete Event Simulation,”
Communications of the ACM, Vol. 33 no 10, pp.
30-53, 1990.

[5] D. Jefferson, B. Beckman, et. al, “Distributed
Simulation and the Time Warp Operating Sys-
tem,” Proc. 12th SIGOPS - Symposium of Op-
erating Systems Principles, pp. 77-93, 1987.

[6] P. Hontalas, B. Beckman et. al, “Performance
of the colliding pucks simulation on the time warp
operating systems (Part 1: Asynchronous behav-
ior and sectoring),” Distributed Simulation, SCS
stmulation series Vol. 21, pp. 3-7, 1989.

[7] P. Reiher, R. Fujimoto, et. al, “Cancellation
strategies in optimistic execution systems,” Dis-
tributed simulation SCS simulation series Vol
22,1, pp. 112-121, 1990.

[8] P. Reynolds, “A Spectrum of Options for Paral-
lel Simulation Protocols,” Proc of ACM Winter
Simulation Conference, pp. 325- 332, 1988.

[9] J. Steinman, “SPEEDES: Synchronous Parallel
Environment for Emulation and Discrete Event
Simulation,” Advances in Parallel and Distributed

Simulation, SCS simulation series Vol. 23, pp.
95-103, 1991.

[10] J. Steinman, “SPEEDES: A Unified Approach
to Parallel Simulation,” 6th Workshop on Paral-
lel and Distributed Simulation (PADS92), SCS
simulation series Vol 24, pp. 75-84, 1992 .

[11] D. Young, Object-Oriented Programming with
C++ and OSF/Motif, Prentise Hall, 1992.

|

"

