JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM

SB:3630-87-003
July 29, 1987

TO: Time Warp Dist.
FROM: S. Bellenot

SUBJECT: Memory Experiments and Observations

Distribution:

Beckman, B
Blume, L
DiLoreto, M
Feinberg, A
Hontalas, P
Jacobson, B
Jefferson, D
Laroche, P
Paine, G
Silliman, A
Sturdevant, K
Tupman, J
Warren, V
Wedel, J
Wieland, F

- Younger, H

MEMORY EXPERIMENTS AND OBSERVATIONS

Steve Bellenot

Trade you for some memory.

The experiments mainly center on the policy of trying to
reclaim one piece of memory (a message) for each memory allocation
when the amount of "free memory" is low (hence a trade). This
implementation does not stop memory from being completely
allocated, nor is it designed to rescue Time Warp when it is out of
memory. Indeed, the allocation routine will either allocate the
requested memory or stop the simulation. (There are other parts of
this code which will attempt heroic measures, but they are not being
exercised in the experiments below.)

This collection of observations on memory management is
basically a report of some experiments run on the Sun network. The
Time Warp code was modified to run these tests, the nearest Time
Warp version is 1.05. The Sun network doesn't give repeatability, so
these results are not quantitative. All runs were made using
Commol2s with a config file called commol2b.cfg (see appendix).
Commol2s requires more than one-half of a megabyte of memory to
execute. In all of the experiments, Time Warp had one megabyte of
memory on each node.

The Algorithm:

Each request of memory has two parameters: size -- the
number of bytes wanted -- and create_time -- a "timestamp" of the
request, usually the sendtime of the state or the message that is
about to be created. The routine checks to see if the number of bytes
allocated is above or below the variable "h20" (for water level or
water mark). If the amount of allocated memory is below h2o0, then
we just grant the request. On the otherhand, if the amount of
allocated memory is above h2o0, we attempt to find a message (with
sendtime > create_time) to repossess. At most one forward message
is reversed or one anti-message is sent ahead. And in all cases, the
requested memory is allocated or the simulation is stopped.

Some justification:

1. Messages with sendtime less than create_time were not
considered for messages to send back. The original reasoning was
that the messages with sendtime less than create_time would be
needed before the message or state being created. This original
reasoning was replaced by "this allows us to run on one node with
h20 well below the amount of memory actually needed to run
commol2" . (It turned out to protect against dangling pointers too
(see "notes on implementing and debugging message sendback").)

2. The amount of memory freed or allocated by such a trade
depends on several things. If the victim message or anti-message is
on node, then two message buffers will be freed "instantly", else one
message buffer will be freed "eventually". Unfortunately, not all
message buffers are the same size and not all states fit into the
"standard” message size. However it is the easiest trade to code.

Boring details:

1. The routine always first searched for the "best” message to
send back. If that failed it would then search for the "best" anti-
message to send ahead. Thus we could do two complete searches
through the "Ocb list" on each allocation request.

2. More than just "some care" is needed to prevent sending
back a message before GVT (see "notes on implementing and
debugging message sendback").

3. Measurement of bytes allocated was just the amount of
memory currently allocated. The free memory could have been too
fragmented to be useful. There are better ways to measure the
amount of useful free memory, but without buffer pools these
methods are too slow. (see comments on measuring useful memory
below.)

ONE NODE RUNS:

The appendix contains several histograms of the percent of
memory allocated at succeeding "GVT ticks" for variations in both
h20 as well as GVT timer interval. (Each GVT tick is another GVT

update, that is, ticks count the number of gvt updates. Usually, but

not always, the variable gvt increases with each "tick".) There is also
one MacDraw page which attempts to combine all this information.
This percent of memory allocated is measured just before garbage
collection and is very likely the maximum amount of memory
allocated since the last garbage collection. (Well, the last couple of
messages could have been annihilated.)

At first glance these histograms look very successful. As we
crank down the percentage of h2o we see the memory used go down
significantly. Since one node tests are sequential except for the timer
interval between GVT calculations, these results have some
repeatability.

Analysis:

However, the "create_time" is always greater than or equal to
the send time of any message in any queue! That is, the allocation
routine always fails to have a message to trade in. (Well, gvt
messages have create_time = NEGINF and they cause message
sendback.) So why is this working?

Each memory allocation with bytes_used bigger than ho
delays by doing two useless loops looking at each ocb (there are
around 100 ocbs) for a message to send back. These delays "slow
down" Time Warp and hence make it appear that the GVT timer
interval is smaller than its real value. The histograms for timer
intervals of 5, 4, 3, 2, and 1 second show a similar decrease in the
amount of memory used. The composite charts on the next page
attempt to show how h2o values and timer interval values change
the amount of memory used.

A couple of notes of optimism:

1. The h20 method is flexible enough so that peak memory
requirements can be higher than the hpo level. (See justification 1
above.)

2. The h20 method slows down Time Warp on a node by node
basis, whereas decreasing the GVT timer interval effects all nodes.

3. And for what it is worth, Commol2 is being executed in less
(0.67M vs 0.77M) memory when this method is used.

#GVT ticks

#GVT ticks

90 1

80
70
60
50
40

30 +
20 1

e\
Tolupisy

10
0

90 -
80 A
70 A
60 A
50 -
40 -

30
20
10

e

-9

o-—'/
7
ot

53 55 57 59

m‘m—m—m—m—m—m—m—m‘k
51

ﬁk

o-o-o-o-l-l-D=D-n-m-*

61 63 65 67 69 71

% Memory Allocated

IS

e M T

.

0 m—n—n-'i‘i"ﬂ:fn-&-ﬁ(f&-rﬁ‘lﬂvﬁ‘# ““O-!‘E\U-D-D-D-AF*
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

% Memory Allocated

73 75 77

0~ gvti
‘O- gvi2
‘B~ gvt3
‘O gvtd

-4~ gvt5

55h20
60h20
65h20
70h20
85h20

One Sun Node Tests, Commoi2s, TW near 1.05

GVTH1, 2, 3, 4, 5 is the timeval on top, h20 =

h20 = 55, 60, 65, 70, 85 on bottom, GVT =
GVT5 and 85h20 are the same run

FOUR NODE RUNS:

The appendix contains several line graphs of the percent of
memory allocated versus GVT ticks on each of the four nodes for
various values of h2o0. Some of these line graphs suddenly stop. Excel
seems to think that 400 data points is enough, but then keeps
extending the x axis as if all 500 or so data points are being plotted
anyway. These line graphs show how different the Sun network can
be from one run to the next. Indeed, the runs with h2o = 85, 65, and
55 all execute below h20 for the entire simulation, but the graphs
look different.

These four node runs sometimes get off to a "good start” like
h20 = 55 and continue to be "balanced through out" the simulation.
On the otherhand, often, like in h20 = 85, we will see one node that
requests alot of memory and the other nodes are "following" its lead.
In all cases, after the initial running in period, memory allocation
seems to "settle down". There are still peaks and nodes which
"follow" in step, but they are not as high as the initial peak.

A word of warning, in order to obtain the data for these line
graphs the output of each the four nodes had to be redirected to its
own file. This introduced yet another demand on the ethernet, and
its effects on the timing are unknown. (Sometimes the sockets
interconnecting the copies of Time Warp on the different Suns would
themselves be quite slow.) However, it is interesting to observe that
h20 = 85, 75, 65 and 25 all took over 100 GVT ticks (timer interval is
5 seconds in all of the line graphs) while hpo = 55, 45, 35 and 30 all
took less than 90 GVT ticks.

How much are we trading?

Perhaps the first question to answer is why can the amount of
memory allocated continue to raise well above the h2o level? There
are two possible leaks: 1. The allocation requests could be of a larger
size than the size of the traded in memory; or 2. The routine often
fails to find a victim message (which happens when the incoming
request is timestamped farthest in the future).

Let us analyize the second possibility first. The fear is that
messages from off-node, timestamped far in the future of our node,

are slipping through our trading process. However, in each of our
runs GVT progresses, so that each node is making states and
messages with sendtime equal to PVT. The allocation for these on-
node states and messages would make these off-node-far-in-the-
future messages victims and these off-node messages would be
returned almost instantly. (So much for the original justification #1.)
Thus the only way a node would never find a victim is if it is farther
ahead of any node who sends it messages. Also nodes which are
behind its communicating nodes will find off-node messages to
victimize (when h2o0 is less than bytes allocated).

Once again the amount of memory traded is hard to guess. But
since there are four nodes, there is perhaps a one-in-four chance that
the victim mesage is on-node. Since Commol2 (run sequentially) has
around 36K message pairs and 17K states, there are over four times
as many messages as states. Roughly the memory is in the same
ballpark. Thus it seems likely that the memory allocated above the
h2o level is generally useful work. That is no victim is found because
this node is farthest ahead.

(This config file could do strange things. Node O could be the
farthest behind, be in memory allocation trouble and be requesting
memory farthest in the future. A bunch of commo objects on this
node were blocked awaiting query replies at a low virtual time (i.e.
10 - 20). However, there are also "self propelled" objects running the
node out of memory at high virtual time (i.e. 400 - 450). The h2o
method slows the allocation enough so the query replies can get to
the node before memory is completely allocated for times far in the
future.)

Anyway, we ran some experiments to see exactly what kind of
victims which were being chosen by this allocation routine. These
runs were executed after those runs which were used to draw the
line graphs. Three runs were chosen under different h20 levels.

Light load: victim was none (none found) or on-node or off-node

node none on off total %none %on %off
0 4.7K 25K 0 7.2K 65% 35% 0%

500 250 0 750 67% 33% 0%

1
2 2.4K 400 600 3.4K 71% 12% 18%
3 1.6K 350 250 2.2K 73% 16% 11%

Medium load: victim was none (none found) or on-node or off-node

node none on off total %none Joon Jooff
0 40K 2.0K 0 6.0K 67% 33% 0%
1 1.3K 800 O 2.1K 62% 38% 0%
2 54K . 700 1.0K 7.1K 76% 10% 14%
3 5.0K 1.25K1.25K 7.5K 67% 17% 17%
Heavy load: victim was none (none found) or on-node or off-node
node none on off total Jonone Joon Jooff
0 21K OK 0 30K 70% 30% 0%
1 10K 6K 0 16K 62% 38% 0%
2 37K 43K 5.25K 46.5K 80% 9% 11%
3 30.5K 43K 49K 39.7K 77% 11% 12%

We see that nodes O and 1 are ahead of the other two nodes.
Finding a victim on-node seems to be at least twice as likely as
guessed above. And it looks like most of the memory requests are for
useful work. In particular, no node is causzing another node to be
"memory poor". It is also interesting that the relative percentages
for none, on-node and off-node are not greatly different for the
different loads.

Improvements:

A second threshold (near_doom?). where the memory manager
steals say five of the messages furthest in the future at each
allocation above this threshold. Such an addition could be used to
push an overly allocated memory system back into a reasonable
condition.

Comments on measuring useful memory:

1. The easiest measurement of the amount of free memory is to
just keep a running total of how much is allocated. This runs fast and
is easy to code, but often the free memory is fragmented sometimes
into zillions of useless pieces. At the low percentages of memory
allocation of our experiments this wasn't a problem. However, in
another test 20% of memory free, but no piece was 1/2K or bigger.

2. A suggested (un)fragmentation index of the largest free
block divided by the total amount free seemed not to be the answer.
First it required a search of the memory heap to find the largest free

block, so it cost a lot in time. Second, this index could drop after

garbage colllection--lots of memory was freed, but not to the largest
block.

3. The most accurate way was to see how many states (576
bytes) and message buffers (288 bytes) could be allocated form the
free list. This also cost a complete trip through the heap, but it really
gives the amount of memory useful to Time Warp.

Also if a buffer pool is used in Time Warp, this would be
exactly the information availible. And in the buffer pool case, it
would be fast and easy to keep a running total.

APPENDIX

HISTOGRAMS (one node tests):

H?20 = 85% --timer inteveral = 5
H20 = 85% (a second run)

H20 = 70%

H20 = 65%

H20 = 60%

H20 = 55%

H20 = 50%

GVT = 5 (Timer interval) -- H20 = 85%
GVT =4
GVT =3
GVT =2
GVT =1

Combined line graph of all the histograms.

LINE GRAPHS (four node tests)
H20 = 85%
H20 = 75%
H20 = 65%
H20 = 55%
H?20 = 45%
H?20 = 45%
H20 = 35%
H20 = 30%
H20 = 25%

commol2b.cfg

85histogram

25 T
20
15
histogram
(no. of GVT ticks)

10

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 78 77

% of 1M allocated (pre-garbage time)
H20=85%, 1 Sun, Commo12s, TW near 1.0¢

Page 1

85histogram2

histogram
(no. of GVT ticks)

56 66 67 68 69 70 71 72 73 74 75 786 77 78

% of 1M allocated (pre-garbage time)
H20=85%, 1 Sun, Commo12s, TW near 1.0f

Page 1

70histogram

30T

histogram
{no. of GVT ticks)

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

% of 1M allocated {pre-garbage time)
H20=70%, 1 Sun, Commo12s, TW near 1.0¢f

Page 1

65histogram

40 T

histogram
{no. of GVT ticks)

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

% of 1M allocated (pre-garbage time)
H20=65%, 1 Sun, Commo12s, TW near 1.0%

Page 1

60histogram

histogram
(no. of GVT ticks) 40 +

60 61 62 63 64 65 66 67 68

% of 1M allocated (pre-garbage time)
H20=60%, 1 Sun, Commo12s, TW near 1.0

Page 1

55histogram

histogram
(no. of GVT ticks)

61 62 63 64 65 66 67

% of 1M allocated (pre-garbage time)
H20=55%, 1 Sun, Commo12s, TW near 1.0¢

Page 1

70

histogram
(no. of GVT ticks)

60

61

50histogram

62 63 64 65

% of 1M allocated (pre-garbage time)
H20=50%, 1 Sun, Commo12s, TW near 1.05

Page 1

66

67

gvtdhistogram

25 1
20 1

15
histogram
(no. of GVT ticks)
10

62 63 64 65 66 67 68 69 70 71 72 73 74

% of 1M allocated (pre-garbage time)
GVT timeval = 4, 1 Sun, Commo12s, TW near 1.05

Page 1

35 1

30 '

25 1

20 +

histogram
{no. of GVT ticks) 1

i0T

5+

60

61

gvt3histogram

62 63 64 65 66 67 68

% of 1M allocated (pre-garbage time)
GVT timeval = 3, 1 Sun, Commo12s, TW near 1.0

Page 1

69

70

gvt2histogram

histogram
(no. of GVT ticks)

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

% of 1M allocated (pre-garbage time)
GVT timeval = 2, 1 Sun, Commo12s, TW near 1.05

Page 1

gvtihistogram

90 1
80
70
60

histogram 50
(no. of GVT ticks) 4q

30
20
i0

0

51 52 53 54 55 56 57 58 59 60 61 62 63 64

% of 1M allocated (pre-garbage time)
GVT timeval = 1, 1 Sun, Commo12s, TW near 1.0

Page 1

#GVT ticks

#GVT ticks

90 -+

o—9®

60 | \ .
70°¢ S

0= gvti
60 b

‘O gvt2
50 + .. .

M- gvi3

40 ¥ o

O gvi4
30 + /.\

- 4~ gvis
20+ o-° \ 0]
g - HQ" AN

A> Arkd{xx
0 “o— n—m—m—m—m—m—m‘f_ R 220-0-0-O"N=u-D=0nF el
51 53 55 57 59 61 63 65 67 69 71 73 75 77
% Memory. Allocated
90
80 PN
0T T - 55n2
- o)
60 1 \.
‘O~ 60h20
50 3
‘®~ 65h20
40 o -
O- 70h20
30 +) 9
~ @ -4~ 85h20
20 1 "U;EL '\/A\A
10 1 ;x g{ Af)‘
o cb

0 m—n—mﬂﬁﬂffw&-i{ 'n-rlﬂ“ S A 0-1: Q'm-n-l}m-m-*
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

% Memory Allocated

One Sun Node Tests, Commoi2s, TW near 1.05
GVT1, 2, 3, 4, 5 is the timeval on top, h2o = 85%
h20 = 55, 60, 65, 70, 85 on bottom, GVT =
GVT5 and 85h20 are the same run

% of 1M
allocated
pre-garb

100

85h204n

20

i s i
T Y T

40 60 80

GVT ticks
H20=85%, 4 Suns, Commoi2s, TW near 1.0f

Page 1

100

120

75h204n

100

% of 1M
allocated 50

pre-garb 40 1

0 + + $ + + {
0 20 40 60 80 100 120
GVT ticks
H20=75%, 4 Suns, Commo12s, TW near 1.05

Page 1

65h204n

100 T
go -
80 1
70 e
%of M 80T
allocated
pre-garb

0 20 40 60 80 100 120
GVT ticks
H20=65%, 4 Suns, Commo12s, TW near 1.05

Page 1

55h204n

100 v
90 +
80 -’
70 E

%ofiM 0T

allocated 50 +

pre-garb

30 T+
20 +

10 +

0 t $ + + $ 4
0 10 20 30 40 50 60

GVT ticks
H20=55%, 4 Suns, Commo12s, TW near 1.0¢

Page 1

45h204n

100 -
90 +
80 +

1

% of 1M
allocated 50 +
pre-garb

10 +
0 + y : + $ $ + {
0 10 20 30 40 50 60 70 80

GVT ticks
H20=45%, 4 Suns, Commo12s, TW near 1.0¢

Page 1

100

%of M 60
allocated 50

pre-garb 40

35h204n

10 20 30 40 50 60 70 80
GVT ticks
H20=35%, 4 Suns, Commo12s, TW near 1.0f

Page 1

% of 1M
allocated
pre-garb

100 1

30h204n

20 30 40 50 60 70

GVT ticks
H20=30%, 4 Suns, Commo12s, TW near 1.05

Page 1

25h204n

100 T
90 +
80 +
70 L 3
%of tM 607
allocated 50 T
pre-garb

GVT ticks
H20=25%, 4 Suns, Commo12s, TW near 1.05

Page 1

W s

5 R I A
ol E'}: j_‘JL
rmint ems
l;l:l
choreate
obcreate
obcreate
chcreate
obcreate
obocreats
obcreats
cbocreate

obcreates
obcreate
obcreate
cbcreats
obcreate
obcreate
obcreate
obcreate
obcreate
obcreate
obcreate
obcreate
obcreate
cbcreate
obcreate
obcreate
cbcreate
obcreats
obcreats
obcreate
obcreate
obcreate
obcreate
obcreate
obcreate
ocbcreate
obcreate
cbcreate
obcreate
cbcreate
obcreate
obcreate
obcreate
cbcreate
ocbcreate
obcreate
zhoreats
obcreate
obcreate
obcreate
obcreate

[\OW .

!

L1 OO o

.

1 user

0 uzer ~10
Bnlse
cammol 352
Enlszdel ax
Er252

COMMoZSZ
brz2SzZdel ar
bn3s2
commo3sE
bnzsz2del ay
bnds2
commodsSZ
brds2del ay
bnSs2
commo3S2
bnSSzdel ay
brnés2
commo&s2
bn4S2de
EnFSE
commo7 32
En@z2del ay
Engs2
commo3s2
bn382del ay
bni1s2
commol 32
bnisZdelay
BnzZ83
commozS3
bn2S3delay
bn3z83
commo3S3
bn3S3detl ay
bn483
commod4S3
bnd4S3del ay
bnSS3
commo9sS3
bnSS3del ay
bné&83
CcommasS3
bn&33del ayr
bn733
commo753
ocn753del ay
brBS3
commo3373
bn333del ar
bde 122

o
=,

1ay

commaol Zh.ofg Fage

-10 manuxl

Rellao

|

|
Y BN B |

[T N T U N BN B |
0 BN BN N BRGNS BN S SN

I
NN N

1

b
bnc
brndel
bri
bnc
bride]
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bre
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bnc
bndel
bn
bne
bndel
bn
bnc
brndel
bde

WO WWUWWWWWWOOWOWWWWONRNNBNNNINNNONONNNRKRPDOOOOOOOOO,k rm ke e e s e e e

Jul z0 15

obcreate -7
obcreate -7
obcreats - -7
choreate 3 -7
cocraate c -7
obcreate 1 -7
oboreate = -7
obcreats ey -7
obcreate o -7
obcreate bde 3353 -7
obcreate bdec 353 -7
obcreatfe bdelZzdelayr -7
abcreate bdeZ52del ay -7
obcreats bde?ahde!af -7
abcreate bde1S2del ay -7
obcreate bdez253del ar -7
abcreate bde353del ay -7
obcreate netgn -7
aboreate netsl -7
obcreate net3z -7
obereate netyT -7
obcreate net78 -7
obcreate net7% -7
obcreate netas -7
cbcreate netl?y -7
obcreate net3g -7
cbecreate diviG2 -7
obcreats diviE2commo -7
cbcreate divwG2del ay -7
obcreate diuvE3 -7
obcreate divE3commo -7
cbcreate divG3delay -7
obcreate net?4 -7
obcreate net?sS -7
abcreate net?l -7
obcreate net?72 -7
obcreate net?73 -7
obcreate primemover -8
obcreate bdecdriver -7
obcreate bdedriver -7
obcreate bndriver -7
cbcreate bcdriver -7
obcreate divdriver -7
cbcreate divcdriver -7
obcreats stdout -7
timewval

rmint gutinit user 0 tw 0 gutinit
evtmsg primemover -7

objend

bdec
bde
odec
bde
odec
bde
bdec
bde
bdec
bde
odec
bdedel
bdedel
bdedel
bdede!
bdedel

b l"‘ ‘ g

bnﬂut
brine
bnnet
brinet
bnnet
brnet
bnnet
bnnet
bnnet
div
divc
divdel
div
divc
divdel
divt
divt
divt
divt
divt
pm
bdecd
bded
brnd
becd
divd
divecd
stdout

go

RO EOENENE AR AR R AN AR AR N Nl gy ey

CO0O0OCO0QO - = = 0WWwWwWwMRMNNNKNRP> L

