JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 366-91-3
July 8, 1991

TO: Time Warp Group
FROM: Steve Bellenot

SUBJECT: The Increased Use of Signals in the Sun version of TWOS 2.5.1

The Sun 2.5.1 version of TWOS uses signals in a different fashion
than earlier Sun versions. Only the use of SIGIO (indicating input is
available to read) and SIGALRM (indicating the real time clock has
expired) has changed. Both of these signals were used in earlier versions,
but their use is expanded in TWOS 2.5.1.

Implementation:

1. SIGIO:

A new global flag “maybe_socket_io” to indicate the possibility of
readable data on some socket was used. The assertion is (outside the read
routine) if maybe_socket_io is zero (false), then there is nothing waiting on
any socket. (The converse statement is false, the flag could be true when
there is not any readable data.) The SIGIO signal handler just sets the flag
maybe_socket_io to true. The routine that actually does the reads from the
sockets is now get_msg in SUN_Hg.c. At the start of this routine,
maybe_socket_io is set to false. If a message is found on a socket, the flag
maybe_socket_io is set to true and the message is returned. It must be
done this way since there might be another message still waiting on this
socket. Thus for maybe_socket_io to stay off, every socket must have had
no ready data to read. Note that it is important for the flag to be cleared
only at the beginning of the read routine. This is so that I/O doesn't get lost
in the following sequence of events: Read routine finds socket x empty;
input arrives for socket x; read routine finds socket y empty and returns
claiming there is not any messages to read. The signal handler will reset
the flag in this case and eventually the read routine will be called to read
this message on socket x. (The routine get_tester_input also reads from a
socket, the one connected to the host program, but maybe_socket_io is
always set on exiting get_tester_input.)

2. Idling with sigpause.
In several places the code determines it has nothing to do and so it

sleeps waiting for the next signal. The easiest example is in the host
program which we describe in detail by looking at the following code
which is at the top of the hosts infinite main loop:

sigblock (mask);

if (maybe socket io == 0)
sigpause (0 });

sigsetmask (0);

This uses “reliable signals”. The sigblock call blocks all signals given by the
parameter mask. Blocking a signal “holds” a signal until the blocking is
turned off. The sigpause (0) call temporary clears all signal blocks and
ether pauses until a signal arrives or returns immediately if there is a
signal on “hold”. The sigsetmask (0) call clears all signal blocks. The
sigsetmask is needed for after the return from sigpause, the signals in
“mask” are still blocked. Old style unreliable signals would use something
like the following code:

if (maybe_socket io == 0)
pause () ;

which allowed the signal to happen between the test of maybe_socket_io
and the call to pause, resulting in maybe_socket_io being set when the call
to pause happened. The resulting program could hang waiting for an event
which may have already happened.

There are other places were the pair sigblock(mask) and
sigsetmask(0) are used to give “atomic” access to a critical section (the
variable maybe_socket_io in the above case). As an exercise, the reader
can show that the call to sigsetmask (O) is not needed in the host
program, but is needed in the main timewarp loop.

3. SIGALRM:

A new global flag “timed_out” is set whenever SIGALRM occurred.
The main time warp loop calls “‘check_timeouts” which clears the
timed_out flag, checks to see what has timed out, calls the required
routines and possibly resets the alarm. (Note: the usual UNIX alarm calls
cannot used with this system!) Currently -there are three possible routines
to call, the gvt interrupt routine, the dlm load interrupt routine and a
spare interrupt which is currently unused. Since there is only one real time
clock per process in UNIX, there is only one alarm and its use must be
multiplexed with other timing data needed for dynamic load management.
The variable last_timer in the file SUNtime.c becomes a critical section
which must be protected with sigblock--sigsetmask pairs. The signal
routine for SIGALRM updates the variable node_cputime as well as setting

the timed_out flag. Currently this code is protected by “ifdef MICROTIME”
wrappers, since it is designed to work on the butterfly and the hypercube
with little additional work.

4. The sigpause in the main loop of timewarp.c

Care should be taken to make sure the sigpause is not called if there
is anything left for timewarp to do. The long list of conditions checked
before the sigpause is an indication of hard won experience. There is a
chance that all are currently checked. (Calling sigpause can speed the
arrival of signals.)

5. Deadlock solution

There was a deadlock condition in the old Sun socket code which has
been removed in version 2.5.1. In the old code, both the read and write
routines went into hard (i.e. possibly infinite) loops to complete partial
reads or writes. Deadlock occurred when, for example, node 1 was trying to
complete a send to node 3 while node 3 was trying to complete a send to
node 1. The send from node 1 to node 3 to would complete only if node 3
would read from the socket node 1 was writing. This example deadlock
occurred on every 4 node run of stb88.

The solution requires another global flag “partial_send” and periodic
calling of the routine resend_msg until the flag is cleared. All possibly
infinite loops in time warp need to do this. Currently, there are only two
such loops known, the time warp main loop and the hard read loop
mentioned above. The partial write hard loop has been replaced. On a
partial send, data structures are filled which allow resend_msg to complete
the send. Since there is room for exactly one partially sent message, no
other message can be sent until the partial sent is completed. (It has
always been ok for the low level send routine to return complete failure, it
is the partial failure case which causes the problems above.)

6. Difficulties

The main problem in implementing the signal driven I/O was to
multiplex the tester messages with the time warp messages. This required
playing with the low level message layer and the tester layer which are
not the finest code in TWOS. This multiplexing was necessary since they
needed to use the same signal. In the end, the mercury like function calls
were implemented for the Sun (in SUN_Hg.c of course), and low level
message headers were added to tester messages. It is no longer the case
that a tester call on the host will interrupt an object in an infinite loop. If
this is desired, it possible to use SIGURNT to re-implement this behavior.

7. Justifications

Dynamic load management requires both real time measurements of
object execution time and two alarms. UNIX with its single alarm and
Mercury with its single malarm require supporting code to multiplex the
two alarms. To support dlm, both something like MicroTime and a routine
like check_timeouts are needed.

The signal driven socket I/O was required by performance. In
version 2.5, all timewarp messages were read by polling all the sockets on
every pass of the main loop. On average, each read of a socket was about
0.25 milliseconds which isn't much until one realizes how often this is
called. Profiles of code execution showed that between 20 and 50 percent
of execution time was spent in read calls.

8. Object timing modes

There are 3 object timing modes in the Sun version: None
(NOOBJTIME) which doesn't time objects (this was the only option for the
Sun before 2.5.1). Real or wall time (WALLOBJTIME) which may include
time which UNIX runs other programs but wall time is needed for the
flowlog. User time (USEROBJTIME) which is UNIX's measure of the time
spent in the process. The simulator object timings are in USEROBJTIME
mode. Because of the number of system calls to get the time, there is a
significant overhead. Going from no timing to user timing increases the run
time of pucks by 5%, stb88 by 3% and warpnet by 2%. Going from user
time to wall time increases the run time again, for pucks it is 4% (9.5% over
none), stb88 it is 2% (5.5% over none) and warpnet it is 2% (4% over none).
At least the user timing mode is needed to support dynamic load
management. Setting the object timing mode is a configuration file option.

9. If 1 had more Suns -

Rather than reading every socket it is possible to do a “select” system
call which finds out exactly which sockets have data available. The select
call seems slower than reading four empty sockets, but could make a big
difference if 1 had more Suns (or even if the 3/50’s had more memory).
The select code is still in SUN_Hg.c where it will be either a run time or
compile time option.

