The Text has a few problems on grammars: Ex 4-5, 4-6, 4-7 on page 164, Ex 4-8,
4-9 on page 167 and problems 3, 4, 5?, 6, 7? on pages 173-174,

Some additional problems:
I. Given A ::= albjc

B ::= A} (C)

¢ ::= B|{B,C}

(Here a, b, and c are terminals, A, B, and C are non-terminals)

For each of the strings below, Indicate all syntactic categories of
which it is a member (i.e. A, B and/or C), if any. Give a derivation and
draw derivation trees.

(1) c (11) (a) (111) (b}
(iv) ({a,b}h) (v} {{(a),b} (vi) {(a),{b,a}}

II. Write a BNF grammar for the language composed of all binary numbers
which contain at least 3 consecutive 1’s., (includes strings like 011110101
and 000011101010 but not 0100110101011)

III. Given

T
W
Y
P
S

(Here T is the start symbol, a, b, d and __ are terminals and the capital
letters are non-terminals)

Which of the following strings can be derived from the rules above.
(1) ba_ababadada_bad_dabbada
(11) abdabaadab_ada

(1i1) dad_ad_ abaadad_badadbaad

be sure to try them first,

4-5 &
4-7 pl
<ident

4-9 pl
<ident

pl

4-8
A
A :
A :
Sim

1

3 pl173

4-6 hint derive them from Figure 4.1 on page 165.
64: One solution is:
ifier>)
AIATT
<letter>A
<letter>Al<digit>A
lution is:
<letter><alphanumeric>*{_ <alphanumeric>+}*

superscripts * ~n
67: These are so simple they are hard. But here is what is wanted.
B+ is defined to be the same as A ::= B|AB
[+ on top of -]B 1s defined to be A ::= B|+B|-B
{B on top of C} is defined to be A ::= B|C

A ::
67: One s
ifier> ::

o

imple substition will get you from Figure 4.1 to Figure 4.2 now.

! <legal subscript> i:i= CIVIC+V|C~V|C*V|CAV+CIC*V-C

C integer constant, V an interger variable.

4 pl73: hint see pages 147-148
6 pl74: <compound statement> ::= begin <statement list> end
<statement list> ::= <statement>]<statement>;<statement list>
is BNF
<compound statement> ::= begin <statement>{;<statement>}* end
is extended BNF superscript *
The la

st notation is of your choice perhaps
<compound statement> ::= begin <statement>[;<statement>]... end

answers to the additional problems
I. since C~>B->A the possible answers for each string is either

None,

(deriv
(1)

(11) Only B and C: C->B->(C)->{(B)->(A}->(a). Note only a, b or ¢ is derivable

(111)
(iv)

(v} C Only: C->{B,C}->{(C),C}~>{(B},B}->{ (A),A}->{(a),b}. Note only strings
which start and stop with (and) are derivable from B other than a, b & c.

(vi)

II. Let S be the start symbol and T be another non~terminal then .one solution

is 8

III. B
is d
from

S
repl
term

T
deri

Thus t
S and
W=
Y ::=
which
Sa aSa
aSSaSa
Sas aS

C only, B and C only or all three of A, B and C.

ation trees are not fun to draw in ascii files, so i didn’t)
All three: C->B->A->c. :

from A.
None: every rule with a curely brace also has a comma, so every string
in the language has # of '{’ = % of ’,’” = # of '}’ and {b} doesn’t.
Only B and C: C->B->(C)~>({B,C})->({B,B}}->({A,A})->({a,b}).

€ Only: C->{B,C}->{(C), {B,C}}->{(B),{B,B}}->{ (A}, {A,A}}~>((a), (b,a}}.

1:= T|0S]1s|sS0}s1
= 111

ecause the only rule with the _ is T->T W, each of the given strings
erivable from T 1f all the substrings between the ’ ‘ are derivable
W.

econd since the only way to obtain b or d is via S, then we can

ace each b or d with $ in all these substrings and pretend S is a
inal.

hird, we "expand" P out to eliminate it. (Since P~>Sa is the only
vation possible from P.)

he problem has become given W is the start symbol, Y non-terminal, and
a are terminals with the rules:

Y YWY

SalSaS}aSalas

of the following strings are derivable:

SasSaSa SaS SaSSaSa

aSasS aSa

aSaaSaS SaSaSSaaSs

starts with a letter than letters $/or digits
non-zero strings of letters &/or digits

Clearly the short strings: Sa SaS aSa and aS are derivable. Also
W->YWY->Y¥YY->aSa¥YY->aSaSa¥->aSaSasSa.
W->YWY->YYY->SaSYY->SaSSaY~->SaSSaSa.,
W->YWY->YYY->aSaYY~->aSaaSY~->aSaaSaS.

There are two more, for the long one:
W-DYWY->YYWYY->YYYYY->aSYYYY->aSSaYYY->aSSaSaYY->aSSaSaaSY~->aSSaSaaSas.
which leaves only SaSaSSaaS which can’t be derived. (Note that all
strings must be derived from an odd number of Y’s. From one Y we can get
strings of length two or three. From YYY we can get strings of length
six to nine., From YYYYY we get strings of length ten to fifteen.) Since
SaSaSSaaS has length 9, if it were derivable, it would be derivable from
YYY and SaS, aSS and aaS would have to be each derivable from Y. Neither
aS$ nor aaS is derivable from Y.

going back to the guestion which was asked, only the last one is not
derivable (it was dad_ad_abaadad_badsdbaad)

under construction
due mon last week of classes., 4 dec 89

Start with the stuff in ~bellenot/lisp-part3
you will need "makefile" and "main.c"
note the new test-data files:

opTest, opTest2, propTest, oldTest, facTest
mapTest, setTest

NOTE that there are changes in the include files and
many of the other files,

things for you to do:
0. Improve your stuff from part2 as required to:

a. make C-functions like isNull isAtom isEq return C-booleans
actually calls to isNull({x) should be replaced by x==nil and
similarly for isEq. isAtom should exist.

b. remove the tail recursion from evlis evcon pairlis and assoc.

1. Change main.c so to include the functions in evaluate.c which

you did for part2 of the project. You will need to do a few

changes to reflex the change of "Token" from a structure to

a C++ class. This part should be little or nothing unless you used

a Token to make new numerical atoms (now use newNumNode in symtable.c)

2. In main.c there are "poorly implemented" calls to 4 new functions

(which are coded in opsys.c) add these to your lisp interpreter:
(shell) which "calls" evShell
(load filename) which reads filename as input calls

evLoad (filename)
(edit filename) which calls evEdit (filename)
The editor which is called is determine by your
environment, in your .login file there is most
likely a line '"setenv EDITOR emacs" which determines
which editor which will be called, If you don’t have
EDITOR defined you will get vi ":g" to quit or "22"
(ledit filename) which calls evLedit (filename)} which
edits and then loads the file,

HINTS: strings don’t work as filenames do you have ‘‘"foo"’’

as a filename? These go in apply so ’filename or (quote filename)

is needed.

3. (if you haven’t yet done so) plus, diff, times, quotient, and mod

NOTE no remainder, minus replaced with diff!

This requires numbers and strings to be self-evaluating

(plus 1 23 ...) =1+ 2+ 3+ ... or 0 if no parameters

(diff 1 23 ,..) =1 ~2-3 - ... or 0 if no parameters

{times 1 2 3 ...) = 1 times 2 times 3 times ... or 1 if no parameters

(quotient 1 2 3 ...y =1/ 2/ 3/ ... or 1 if no parameters

(mod x y) is "C" x%y (two parameters only)

4, set and setqg functions
(set x y) adds {(x . y) to alist called environment and returns y.
(setq x y) is the same as (set ’‘x y), the parameter x is not evaluated
5. property lists (see ch 9 in text)
(a b cde f) property a has value b, ¢ has value d and e has value f

(plist atom) returns the property list for atom (stored in pointer
field "plist". see cell.h)
{putprop atom expl exp2) adds expl as value to exp?2 for atom
returns expl. (similar to the putprop of text)
{get atom exp) return the value of property of exp for atom (similar
to the getprop of text)
(remprop atom exp) remove exp and its value from property list
of atom. returns the plist after exp (see propTest file)
6. garbage collection
the garbage collection routine in main.c will need updating. Set
makes the global variable environment non-nil between calls.
7. making the code robust--hints and helps to be added.
a. Make the interpreter functions check for NULL parameters first

and if one is NULL, return NULL.

b. Make eval check if assoc returns nil. If so it should print the
error message “"Eval: undefined symbol %s" and then return NULL

¢. Pairlis should check that the number of parameters match and
printout error messages like too few or too many parameters
And when such errors occur it should return NULL.

d. To make everyone’s lisp the same {car nil) and (cdr nil) will
be ERRORS! (note this is different from the lisp on the vax)
Indeed, {car x)} and (cdr X) are now errors whenever x is an
atom, and should print out error messages like "bad argument
to car" (or cdr). Unlike isNull above, having functions like
SExp * Car (SExp * x) can make the code more robust (because
they can check for NULL and return NULL safely.)

8. "mapcar" (see text page 383 or run file "mapTest" via lisp < mapTest)

Should have:
{defprop atom expl exp2) like putprop but defprop does not
evaluate its parameters
add "def"

(def x y) adds (x . y) to alist called environment but evaluates
neither x nor y.

ADA

with text io; use text fo;
with integer_io; use integer_ lo;

package wraper 1is

task counter is

entry increment (new value : out integer);

entry report_n clear (old value : out integer);

end;

task wire is end;

task recorder is end;

end wraper;

package body wraper is

task body counter is

count_value :integer := 0;

accept increment (new_value : out integer) do
count_value := count_value + 1;
new_value := count_value;

end; -

put_line ("counter.increment");

accept report n clear (old value : out integer)} do

old_value := count_value;
count_value := 0;

end;

put_line ("counter.report_n_clear");

end select;

begin
loop
select
or
end loop;

end counter;

task body wire is
i : integer := 0;
value : integer;

delay 1.0; -- delay one second
counter,increment (value };
put (value); put_line (" wire");

if 1 >= 100 then exit; end if;

begin
loop
=1+ 1;
end loop;
end wire;

task body recorder is
i : integer := 0;
value : Integer;

begin

loep
delay 10.0; -- delay ten seconds
counter,report_n_clear { value);
put (value); put_line (" recorder");
i =1+ 13
1f 4 >= 10 then exit; end if;

end loop;

end recorder;

end wraper;

OUTPLUT

counter. increment
1 wire
counter.increment
2 wire
counter, increment
3 wire
counter, increment
4 wire
counter, increment
5 wire
counter.increment
6 wire
counter, increment
7 wire
counter.increment
8 wire
counter, increment
9 wire
counter.report n clear
counter. increment
9 recorder
1 wire
counter, increment
2 wire
counter.increment
3 wire
counter. increment
4 wire
counter, increment
5 wire
counter.increment
6 wire
counter. increment
7 wire
counter.increment
8 wire
counter, increment
9 wire
counter.increment
10 wire
counter.report_n_clear
counter, increment
10 recorder
1 wire
counter, increment
2 wire
counter, increment
3 wire
counter, increment
4 wire
counter.increment
5 wire
counter, increment
6 wire
counter. increment
7 wire
counter, increment
8 wire
counter, increment
9 wire
counter, increment
10 wire
counter.report_n_clear
counter, increment
10 recorder
1 wire

fsucs 1> cat cnc.c

char * Q = u\nu, * B o= u\\n, * NL = "\n";
char * SO = "char * Q = %s%s%s%s, * B = %s%s%s%s, * NL = $s%$sn%s;$s";
char * S1 = "char * S0 = %s%s$%s;%$schar * S1 = %$s%s%s;%schar * S2 = %s%si¥s;%s";
char * S2 = “char * 83 = %s%s%$s;%schar * S4 = %s%s%s;%schar * S5 = %s%s%s;%s";
char * S3 = "$s%smaln{)%s{ss printf (80, Q, B, Q, Q, Q@ B, B, Q, Q, B, Q, NL);%s printf (S1, Q, SO0, Q, NL, @, S1, Q, NL, Q, S2, Q, NL):%s";
char * s4 =" printf (S2, Q, 83, Q, NL, Q, S4, Q, NL, Q, S5, Q, NL);%s";
char * 85 = " printf {(83, NL, NL, NL, NL, NL, NL); printf (S4, NL, NL);%s printf (S5, NL, NL, NL);%s}%s";
main()
printf s0, Q, B, Q, Q, Q B, B, Q, Q, B, Q, NL);
printf si, Q, SO0, Q, NL, Q, S1, Q, NL, Q, 82, Q, NL };

(
(
printf ($2, Q, S3, Q, NL, Q, S4, Q, NL, Q, S5, Q, NL);
printf (S3, NL, NL, NL, NL, NL, NL); printf (S4, NL, NL);
printf (S5, NL, NL, NL };
fsucs 2> g++ cne.c
In function int main (}:
cnc.c:12: warning: implicit declaration of function ‘printf’
fsues 3> a,out > cnc.out
fsucs 4> diff cnc.c cnc.out
fsucs 5># no differencest!
fsucs 6> cat self-fun.lisp
(def srf (lambda ()

({lambda (seed) (list (list ‘lambda ’‘nil {(list seed (list ’'quote seed}))}}

(quote (lambda (seed) (list (list ‘lambda ’'nil (list seed (list "quote seed))})))))

)

(1ist (getd ’srf))

{srf)

(equal (list (getd ’srf)) (srf))
fsucs 7> lisp <self-fun.lisp
Franz Lisp, Opus 38.79

-> srf
-> ((lambda nil ((lambda (seed) (list (list ’lambda ‘nil (list seed (list ’'quote seed)})))) ’'(lambda (seed) (list (list ’lambda ‘nil (list seed (list ‘quote seed))))))))
~> ({lambda nil ((lambda {(seed) (list (list ‘lambda ’nil (list seed (list ‘quote seed))))) ’(lambda (seed) (list (list ’lambda ‘nil (list seed (list ’‘quote seed))))))))
-> t

->

fsucs 8> # files in ~bellenot

1 Cit

2
3

>—-‘O\OOO\IO'\UI-PUJ[\)P—‘O\DOO\]O\UIQUJ[\)&—*O\OOO\)O\Ul-&;u)[\.)»—Q\OOO\IO\LII-L\

—

[—

struct Name

char¥ n;
int X,¥,2Z;

Name(char*,int xx=-1; int yy=-1

Name(Name&);
operator=(Name&);
void ~Name();

cxtern void takeName (Name);
main()

Name a("Foo");

Name b("Foo", 23, 45, 12);

Name* ¢ = new Name ("Foo", 23, 33);
Name* d = new Name ("Foo", 1);
takeName(a);

c=d;

delete c;

delete d;

int zz=-1);

SR Yo Re, RV, RV, RV RV, 00, RV R, RV, RV R
OV NP W —O

(e Yo Yo Je
~N N B

N B N e Ye.
AN OO

C

struct Name

char* n;
int X,¥,2;

};

void setName(Name*, char*);
void setNamecl(Name*, char*, int);

void setNamec2(Name*, char*, int, int);
void setName3(Name*, char*, int, int);
void copy(Name*,Name*);
extern void takeName (Name);
main() *
{

Name a;

Name b;

setName (&a, "Foo");

setName3 (&b, "Foo", 23, 45, 12);
Name* ¢ = malloc (sizeof (Name));
setName2(¢, "Foo", 23, 33)

Name* d = malloc (sizeof (Name));
setNamel(d, "Foo", 1);

Name* temp = malloc (sizcof(Name));
copy(temp,a);

takeName(a*);

delete c¢->n;

(c*) = (d*);

free(a.n);

free(b.n);

free(c->n);

free(d->n);

