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The talk is a slide show. The slides are framed in yellow rectangles. The quotation that follows, is what
might have been said while the audience was looking at the slide. The blue comments like this one were
added later and not part of the welcome. The title frame above was not the original.

The Pythagorean: Hippasus of Metapontum

Hippasus (c. 500 BCE) is sometimes credited with the discovery of irrational numbers. He
was a member of the Pythagoreans, a secretive group. Perhaps he was drowned for revealing the
existence of irrationals. A similar story is told the revealer of the existence of the dodecahedron,
so maybe it is not true.

It never hurts to introduce a little danger into a math talk. There is evidence, that the golden ratio was
the first number found to be irrational, and not

√
2.
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Infinite Descent, Escher’s Waterfall

We are going to get a contradiction by constructing an infinite strictly decreasing sequence of
positive integers. Something that cannot happen. This proof is sometimes described as infinite
descent. Escher’s Waterfall is a good image for this idea.

Suppose
√

2 = a/b in lowest terms

Let an = (
√

2− 1)na and bn = (
√

2− 1)nb. Since 1 <
√

2 < 2, 0 <
√

2− 1 < 1 and

a0 > a1 > a2 > · · · > 0, b0 > b1 > b2 > · · · > 0

an
bn

=
a

b
=
√

2 =⇒
√

2bn = an
√

2an = 2bn

%pause
an+1 = (

√
2− 1)an = 2bn − an, bn+1 = (

√
2− 1)bn = an − bn

Both sequences are strictly decreasing sequences of positive integers.

First we define the integer sequences an and bn. Second we note that we are multiplying by
a positive number less than one so the sequences are strictly deceasing. We use an/bn =

√
2 to

obtain
an+1 = 2bn − an and bn+1 = an − bn

which shows if an and bn are integers so are an+1 and bn+1. The infinite descent is complete and√
2 is irrational.

This is not far from the usual proof. See a geometric version http://www.cut-the-knot.org/proofs/

sq_root.shtml#proof7 and 28 other proofs.
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It Ain’t Me Babe

The next proof shows that each rational a/b is relatively far from
√

2. “It Ain’t Me Babe” is
a Dylan song, but it is on a different album.

For integers a and b, |
√

2− a/b| > 1/3b2

Case 1: 0 ≤ a/b ≤ 3/2,

|
√

2− a/b| = |
√

2− a/b| |
√

2 + a/b|
|
√

2 + a/b|
=
|2− a2/b2|√

2 + a/b
>
|2b2 − a2|

3b2
≥ 1

3b2

Case 2: a/b > 3/2, |
√

2− a/b| > |3/2− a/b| = |3b− 2a|/|2b| > 1/3b2

Case 3: a/b < 0,|
√

2− a/b| > 1 > 1/3b2

For Case 1; we start by rationalizing the numerator. We decrease the fraction by increasing
the bottom from

√
2 + a/b to the larger 3 and we decrease the top by noting |2b2 − a2| is an

integer, which is non-zero and hence greater or equal to one. In Case 2, replace
√

2 with the
larger 3/2. Again |3b− 2a| is an non-zero integer and we decrease the fraction by increasing the
bottom from |2b| to the larger 3b2. Case 3, the number is larger than

√
2 and certainly 1/3b2.

One needs to know
√

2 is irrational in this proof, so that 2b2 − a2 6= 0. Algebra shows

2b2 − a2 = 0 ⇐⇒ (a/b)2 = 2.

Using convergents of continued fractions, it is known that there are infinitely many fractions a/b so that

|
√

2− a/b| < 1/b2.
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Precalculus Theorem about Rational Roots

Theorem. If p and q are relatively prime and p/q is a root of anx
n + an−1x

n−1 + . . . a1x + a0 with
integer coefficients then p | a0 and q | an.

Proof: Substitute x = p/q and multiply by qn

divisible by p︷ ︸︸ ︷
anp

n + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n︸ ︷︷ ︸

divisible by q

= 0

This is the rational root theorem. Since p | 0, the right hand side of the equation and the
first n− 1 terms, it must divide the last term p | a0qn. But p and q are relatively prime so p | a0.
The q | an case is similar.

My Calculus 1 instructor started our class proving this theorem. The theorem was not in my calculus
book. All of the teaching assistants at Florida State University usually have Precalculus as their first solo
class, and Calculus I as their second.

Dead On or Completely Off Base

Corollary: A root of monic polynomial is either an integer or an irrational.
Because q | 1 it, follows q = ±1.

Since 2 is not a square,
√

2 is a non-integer root of the monic polynomial x2 − 2 and hence is
irrational.

A polynomial is called monic if the coefficients are integers and the leading coefficient is one.
Since the bottom q = ±1 any rational roots are integers. We have a direct proof, that

√
2, an

non-integer root of the monic x2 − 2, is irrational.

Picture sources

1. Hippasus picture is from
https://pointatinfinityblog.wordpress.com/2018/05/07/hippasus-and-the-infinite-descent/.

2. Escher picture is from https://en.wikipedia.org/wiki/Waterfall_(M._C._Escher)

4. Dylan picture is from the album cover in iTunes.
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