Spring 2015 Welcome

Steven F. Bellenot

Department of Mathematics Florida State University

Spring 2015 Florida State University, Tallahassee, FL Jan 5, 2015

Paul du Bois-Reymond (1889) PDE Classification

Talking Points

Grade Distributions Email Accommodations

Classifications of 2-D PDE's

Write $Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = 0$ as the quadratic $Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$ and classify by the eigenvalues of quadratic form

$$\left[\begin{array}{cc} A & B \\ B & C \end{array}\right]$$

opposite signs means hyperbolic, same signs means elliptic, one zero parabolic

Pierre-Simon Laplace (c1780) Laplace's Equation

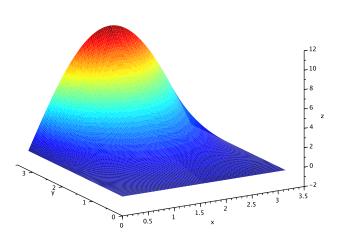
Properties of Solutions

$$u_{xx} + u_{yy} = 0$$

Speed Zero Solutions Harmonic – Power Series Elliptic Steady State Temperature

Typical Solution





Elliptic and Grade Distributions

http://www.maa.org/CSPCC

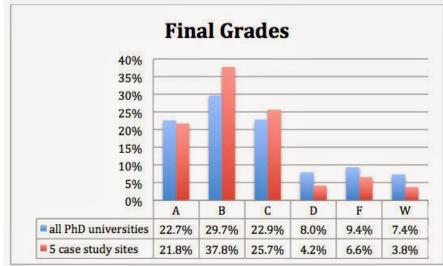


Figure 1: Instructor reported final grades.

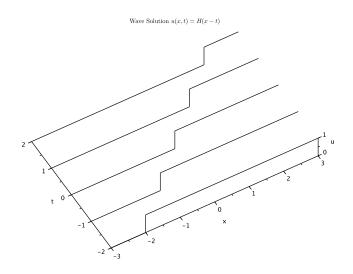
Jean le Rend d'Alembert (1748) Wave Equation

Properties of Solutions

$$u_{xx}=u_{tt}$$

Finite Speed
Discontinuous Solutions
Hyperbolic
Vibrating String

Typical Solution



Wave Equation and Email

Advisors (other than Pamela) are not your friend

 Do not reply to email from students wanting to add your class – just forward them to advisor@math.fsu.edu

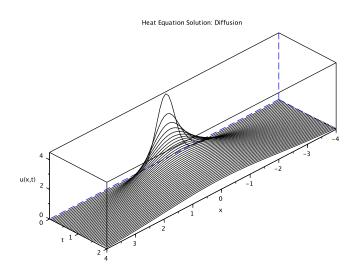
Jean-Baptiste Fourier (1810-1822) Heat Equation

Properties of Solutions

$$u_{xx}=u_t$$

Speed Infinity Solutions C^{∞} Parabolic Diffusion

Typical Solution



Heat Equation and Accommodations

- The letter isn't the request It is a basis for discussion.
- Unlimited Excused Absences One extra excused absence.

$$u = H(x - t)$$
 is a solution to $u_{xx} - u_{tt} = 0$

H is the Heaviside function

$$H(x) = \begin{cases} 1 & x > 0 \\ 1/2 & x = 0 \\ 0 & x < 0 \end{cases}$$

Show
$$u_x + u_t = 0$$

Step 1: Integate with respect to *x* first

$$\langle u_{x}, \phi \rangle = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, t) \phi_{x}(x, t) dx dt$$

$$= -\int_{-\infty}^{\infty} \int_{t}^{\infty} \phi_{x}(x, t) dx dt$$

$$= -\int_{-\infty}^{\infty} -\phi(t, t) dt$$

$$= \int_{-\infty}^{\infty} \phi(t, t) dt$$

Step 2: Integate with respect to t first

$$\langle u_t, \phi \rangle = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, t) \phi_t(x, t) dt dx$$

$$= -\int_{-\infty}^{\infty} \int_{-\infty}^{x} \phi_t(x, t) dt dx$$

$$= -\int_{-\infty}^{\infty} \phi(x, x) dx$$

$$= -\int_{-\infty}^{\infty} \phi(t, t) dt$$

Step 3

We now know $u_x + u_t = 0$ so

$$0 = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial t}\right)(u_x + u_t) = u_{xx} + u_{xt} - u_{tx} - u_{tt} = u_{xx} - u_{tt}$$

Finally

You have a lot of support, if you need help, ask. You are the math department.