The Riemann Hypothesis

Steven Bellenot

Mathematics Florida State University bellenot@math.fsu.edu

http://www.math.fsu.edu/~bellenot/talks/rh09.03/

FSU Math Colloquium – Sep 12, 2003

Bernard Riemann's 1859 Paper

On the Number of Primes Less than a Given 2 Magnitude

. . . it is very likely that all of the roots of . . .

One would of course like to have a rigorous proof of this, but I have put aside the search for such a proof after some fleeting vain attempts because it is not necessary for the immediate objective of my investigations.

RH and PNT

Riemann Hypothesis:

The non-trivial zeros of $\zeta(s)$ all have real part $\frac{1}{2}$

Prime Number Theorem:

$$\pi(x)$$
 (number of primes $\leq x$) $\sim Li(x) = \int_0^x \frac{dt}{\log t}$

PNT is equivalent to the non-trivial zeros of $\zeta(s) = \sum \frac{1}{n^s}$ having real part < 1.

RH and the Error Term

RH is equivalent to the statement for all $\epsilon > 0$,

$$|\pi(x) - Li(x)| = O(x^{\frac{1}{2} + \epsilon})$$

Roughly n-th prime & $Li^{-1}(n)$ have $\frac{1}{2}$ same digits. RH is equivalent to

$$|\pi(x) - Li(x)| \le \frac{\sqrt{x} \log x}{8\pi}$$
, for $x \ge 2657$

The error term is at least $Li(x^{\frac{1}{2}})\log\log\log x$

RH and Primes are Random I

- Li(x) suggests $1/\log x$ is a density like function. Namely the integer n has a $1/\log n$ chance of 4 being prime.
- False? n even. But one can factor this in.
- False? Chebyshev's bias, there are more 4k+3 7 primes that 4k+1 primes.

- Think of $\mu(n)$ being a coin toss on square-free numbers. If the heads/tails are random sequence of N tosses then with probability one the number of heads number of tails grows slower than $N^{\frac{1}{2}+\epsilon}$.
- RH is equivalent to $M(n) = O(n^{\frac{1}{2} + \epsilon})$

The key ideas

- $n = \prod p_i^{\alpha_i}$ where p_i are prime.
- $\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$
- $\sum_{n} \frac{1}{n^s} = \left(1 + \frac{1}{2^s} + \frac{1}{2^{2s}} + \cdots\right) \left(1 + \frac{1}{3^s} + \frac{1}{3^{2s}} + \cdots\right)$ $\left(1 + \frac{1}{5^s} + \frac{1}{5^{2s}} + \cdots\right) \cdots = \prod_{p} (1 1/p^s)^{-1}$
- complex s; $\Re(s) > 1$; PNT $\Re(s) \ge 1, s \ne 1$

What Riemann did in the 1859 paper

- First to consider $\zeta(s)$ as $\zeta(\sigma+it)$.
- Found contour integral representation for $\zeta(s)$ good for all s except for the pole at s=1.
- Doing the contour two ways, yields the functional equation:

$$\xi(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \frac{s(s-1)}{2} \zeta(s) = \xi(1-s)$$

What Riemann did in the 1859 paper

- The entire function $\xi(s)$ is zero exactly at the non-trivial $\zeta(s)$ -zeros.
- Claimed $\xi(s) = \xi(0) \prod_{\rho} (1 s/\rho)$.
- ullet Claims about the distribution of these zeros ho
- ullet And program to go from $\pi(x)$ to the zeros of $\xi(s)$

- All the non-trivial zeros are in the critical strip, $0 \le \Re(s) \le 1$ (Actually $0 < \Re(s) < 1$ by PNT.)
- At least 40.2% of these zeros lie on the critical 5 line $\Re(s)=\frac{1}{2}$.
- Computers have checked billions of zeros.
- ullet All but an infinitesimal proportion are ϵ close to the critical line.

N(T), Counting Zeros in $0 \le \Im(s) \le T$

•
$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T)$$

- There are at most O(T) zeros with $\Re(s) > \frac{1}{2} + \epsilon$
- $S(T) = N(T) \frac{1}{\pi}\vartheta(T) 1$ is a measure of the error term. $S(T) = O(\log T)$, on average S(T) = 0, but S(T) is unbounded.
- RH might be in trouble when $S(T) \approx 100$ which might be when $T \approx 10^{10^{10,000}}$

April 2003

$$\gamma = \lim_{N} \left(\sum_{1}^{N} \frac{1}{n} - \log N\right) \quad \zeta(s) = \sum_{n} \frac{1}{n^s}$$

_

Clay Institute Millennium Problems

P versus NP
The Hodge Conjecture
The Poincaré Conjecture
The Riemann Hypothesis
Yang-Mills Existence and Mass Gap
Navier-Stokes Existence and Smoothness
The Birch and Swinnerton-Dyer Conjecture

Devlin's ordering and page count

44: Riemann Hypothesis

42: Yang-Mills Theory

26: P vs NP

26: Navier-Stokes Equations

32: Poincaré Conjecture

24: Birch & Swinnerton-Dyer C

16: Hodge Conjecture

1

7

3

4

5

6

7

8

Erdős Quote

- On Mathematical prizes in general and about a \$3,000 prize problem in particular
- "The prize money violated the minimum wage law" 5
- \$1 million is roughly 96 years of \$5 per hour work.
- \$1 million is about 10 years work for a "average full professor in 2002: \$96,380"

American Institute of Mathematics Conferences

1996 Seattle
PNT centennial
1998 Vienna
zeta function
2002 Courant
One of the found
owns Fry's Electronics

ζ ZetaGrid

Distributed computing project which uses 'spare' computer cycles to compute zeros of the zeta function. It uses a java program which anyone can download and run. In two years it has computed about a half a trillion zeros and verified RH for these.

http://www.zetagrid.net
Grid computing like SETI@Home

ζ ZetaGrid statistics Sep 8, 2003

- IBM Deutshland sponsored distributed grid 3 computing using idle computer cycles. It involves over 8,000 workstations, yielding a peak power of over 4 TFLOPS and computes over a billion zeros 5 a day.
- 2,891 people 8,053 computers 503 gigazeros 741 days
- SFB 22 million number 1171 on the list

Computer Searches, Theory I

- The functional equation $\xi(s)=\xi(1-s)$ and $\xi(\sigma)$ is real for real σ , so $\xi(\frac{1}{2}+it)$ is real.
- $Z(t)=\xi(\frac{1}{2}+it)=exp(i\vartheta(t))\zeta(\frac{1}{2}+it)$ is real valued.
- Gram points g_n where $\vartheta(g_n)=n\pi$. The function $\vartheta(t)$ is increasing and "easy" to compute.

_

3

•

5

6

7

Computer Searches, Theory II

- 'Expect' $(Z(g_n))(-1)^n > 0$ "good" Gram points. 3 When $Z(g_n)Z(g_{n+1}) < 0$, then $\zeta(s)$ has a zero between g_n and g_{n+1} .
- If $g_n + h_n$ are increasing and separate the zeros of Z(t), and $h_N = 0$ then RH is true for $|t| < g_N$
- computing Z(t) the Riemann-Siegel Formula 7 $O(\sqrt{t})$ -terms vs Euler-Maclaurin Summation O(t)-terms.

Are zeros good for anything?

- A counterexample?, but no million dollars.
- It found the pentitum floating point bug. 'Near zeros' have an application to twin primes.
- Statistics: not random zeros have "repulsion"
- Quantum Mechanics: The energy levels of a heavy nuclei are so complex they are modeled on a statistical study of random matrices.

2

3

4

5

7

The Montgomery-Odlyzko Law

The distribution of the spacings between successive non-trivial zeros of the Riemann zeta function (suitably normalized) is statistically identical with the distribution of eigenvalue spacings of in a GUE (Gaussian Unitary Ensemble) operator.

$$1 - \frac{\sin \pi u}{\pi u}$$

Skewes number

- Gauss conjectured $\pi(x) \leq Li(x)$
- Littlewood (1914) showed it is false infinitely often
- Skewes (1933 with RH) the first failure $\leq e^{e^{79}} \approx 10^{10^{10^{34}}}$
- The estimate is now around to 10^{316} but might 7 be 10^{178} . Estimates on total number of FLOPs in history is 10^{26}

Equivalence I (Robin 1984)

$$\bullet \ n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

- n has $(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_k+1)$ divisors
- $(1+p_1+p_1^2+\dots p_1^{\alpha_1})(1+p_2+\dots+p_2^{\alpha_2})\dots(1+p_k+\dots+p_k^{\alpha_k})=\sum_{d|n}d=\sigma(n)$

Equivalence I (Robin 1984)

- $H_n = \sum_{1}^{n} 1/j$ the harmonic number.
- Euler's $\gamma = \lim_n (H_n \log n)$.
- $RH \iff \sigma(n) < e^{\gamma} n \log \log n$ for all $n \le 5041$
- $\limsup \sigma(n)/n \log \log n = e^{\gamma}$
- $\sigma(n) < e^{\gamma} n \log \log n + 0.6482 \frac{n}{\log \log n}$ for $n \ge 3$

Equivalence II (Lagarias 2000)

- $H_n = \sum_{1}^{n} 1/j$ the harmonic number.
- $RH \iff \sigma(n) < H_n + \exp(H_n) \log(H_n)$ for $n \ge 2$
- ullet RH undecidable (Gödel sense) implies RH is true.

Equivalence III (Beurling 1950?)

$$N_{(0,1)}$$
 is the set of functions of the form $\sum_{k=1}^n c_k \rho(\theta_k/t)$ where $\sum_{k=1}^n c_k = 0$, $\theta_k \in (0,1)$ and $\rho(x) = x - |x|$. TFAE

- ullet $\zeta(s)$ has no zeros in $\Re(s)>1/p$
- lacksquare $N_{(0,1)}$ is dense in L^p
- ullet $\chi_{(0,1)}$ is in the closure of $N_{(0,1)}$ in L^p

History I, false claimers

- Stieltjes 1885
- Hardy postcard to Bohr (Neils brother)
- Levinson 1974 98.4%, The last 1.6
- de Branges (Of Bieberbach fame)

History 2, nay sayers

- Long open conjectures in analysis tend to be false.
- it is arithmetic, to deep for analysis
- Landau
- Littlewood
- Turing

- Möbius function $\mu(n)=0$ if n is not square-free and is otherwise $(-1)^k$ where k is the number of 4 distinct prime factors of n
- $J(x) = \sum_{n} \frac{1}{n} \pi(x^{1/n})$
- Möbius inversion formula
- $\pi(x) = \sum_{n} \frac{\mu(n)}{n} J(x^{1/n})^{n}$

• Derived from Euler's product formula (p prime) $C(s) - \sum_{n} n^{-s} - \prod_{n} (1 - 1/n^s)^{-1}$

$$\zeta(s) = \sum_{n} n^{-s} = \prod_{p} (1 - 1/p^s)^{-1}$$

•
$$\log \zeta(s) = s \int_0^\infty J(x) x^{-s-1} dx$$
 $\Re(s) > 1$

Inverse Fourier Transform

•
$$J(x) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \log \zeta(s) x^s \frac{ds}{s}$$
 $a > 1$

• Riemann found a contour integral definition of $\zeta(s)$ 3 that was defined everywhere except for the pole at s=1 namely

$$\frac{\Gamma(1-s)}{2\pi i} \int \frac{(-x)^s dx}{(e^x - 1)x}$$

 \bullet Riemann found two ways to evaluate this contour integral yielding the functional equation. $\zeta(s)=$

$$\Gamma(1-s)(2\pi)^{s-1}2\sin(s\pi/2)\zeta(1-s)$$

- ullet Derived from the functional equation for $\zeta(s)$
- $\xi(s) = \Gamma(1+s/2)(s-1)\pi^{-s/2}\zeta(s)$
- Satisfies the functional equation $\xi(s) = \xi(1-s)$
- And from a product formula
- $\xi(s) = \xi(0) \prod_{\rho} (1 \frac{s}{\rho})$ where ρ is a zero of ξ

Solving for $\log \zeta(s)$

$$\log \zeta(s) = \log \xi(0) + \sum_{\rho} \log(1 - s/\rho)$$
$$-\log \Gamma(1 + \frac{s}{2}) + \frac{s}{2} \log \pi - \log(s - 1)$$

Solving for J(x)

$$J(x) = Li(x) - \sum_{\rho} Li(x^{\rho}) + \int_{x}^{\infty} \frac{dt}{t(t^{2} - 1) \log t} + \log \xi(0)$$

for x>1, note that the last two terms are small for $x\geq 2$ the integral is 0.14001 and $\xi(0)=1/2$ so $\log \xi(0)=-0.6931$

Solving for $\pi(x)$

Let N be large enough so that $x^{1/(N+1)} < 2$.

$$\pi(x) = \sum_{n=1}^{N} \frac{\mu(n)}{n} Li(x^{1/n}) + \sum_{n=1}^{N} \sum_{\rho} Li(x^{\rho/n}) + \text{lesser terms}$$

$$= Li(x) - Li(x^{1/2}) + \dots + \sum_{\rho} Li(x^{\rho}) + \dots$$

Filling the holes

- 1893 Hadamard Zeros of entire functions
- 1895 von Mangoldt Riemann's main formula (recast)
- 1896 Hadamard and de la Vallée Poussin PNT independently
- 1905 von Mangoldt estimate on number of zeros in strip

Hadamard: Zeros of entire functions

If g(s) is an entire function and z_n is a list of non-zero zeros (with multiplicities) of g(z) and $\sum 1/|z_n|$ diverges but $\sum 1/|z_n|^2$ converges, then $g(z)=z^me^h(z)\prod(1-z/z_n)e^{z/z_n}$. Futhermore the rate 5 of growth of g(z) limits the choices for h(z).

- 1909 book, notation $\pi(x)$ and big oh.
- Pushed work to assistants in hospital via a ladder.
- Pushed work to assistants in train leaving on 5 honeymoon.
- Fermat's last theorem.
- Bohr and Landau, number of roots $\frac{1}{2} + \epsilon \leq \Re(s)$ is infinitesimal

Landau

- Landau problems including the twin prime conjecture.
- Traveled to England cause he didn't believe Littlewood existed
- Very rich, Jewish and lived in Nazi Germany

2

3

4

5

6

Q

9