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ζ zeros and the Riemann Hypothesis



Zeta is built into Maple

Zeta(2),Zeta(4),Zeta(-1),Zeta(3),evalf(Zeta(3));

1
6
π2,

1
90
π4,
−1
12
, ζ(3), 1.202056903

fsolve(Zeta(x),x=15*I,complex),fsolve(Zeta(x),x=20*I,complex);

.5000000000+14.13472514∗I, .5000000000+21.02203964∗I
complexplot(Zeta(1/2+I*t),t=0..30,color=ugly);



Euler, the master of us all
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1
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1
n
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2
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1
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3
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• p(x) has degree 2 ax2 + bx+ c
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Guess the polynomial

• p(x) has degree 2 ax2 + bx+ c

• and p(2) = 0 (x− 2)(px+ q)

• and p(−1) = 0 k(x+ 1)(x− 2)

• and p(0) = 6 −3(x− 2)(x+ 1)

• p(x) = 6(1− x
−1)(1−

x
2)



Knowing nothing is almost everything

• c1, c2, . . . cn are the zeros of a polynomial p(x), and
x = 0 is not a zero, then

• p(x) = p(0)(1− x/c1)(1− x/c2) · · · (1− x/cn).

• If polynomial q(0) = 0, and 0 is a root k times,
then p(x) = q(x)/xk is non-zero at 0 and

• q(x) = xkp(0)(1− x/c1)(1− x/c2) · · · (1− x/cn)

• p(x) = p(0)
∏

(1− x/ci).



Lets make sin a honorary polynomial

lim
x→0

sinx
x

= 1 zero is a single root

sin(πx)
πx

= 0 for x = ±1,±2,±3 . . .

sin(πx)= πx
∏

(1− x
2

n2)

1− x
2

n2 = (1− x
n

)(1− x

−n
)



Series for the product

∏
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Basel solved, coefficents of x3

sinπx = πx
∏

(1− x
2

n2)

sinx = x− x
3

3!
+
x5

5!
− · · ·

sinπx = πx− π
3x3

3!
+
π5x5

5!
− · · ·

−π
3

3!
= −π

∑
n

1
n2 so

∑
n

1
n2 =

π2

6



Coefficents of x5 and ζ(4)

π5

5!
= π

∑
n<m

1
n2m2

(
∑ 1

n2)2 =
∑ 1

n4 + 2
∑
n<m

1
n2m2

(
π2

6
)2 = ζ(4) + 2

π4

120

ζ(4) =
π4

90



ζ(2n)

ζ(6) =
π6

945
ζ(8) =

π8

9450

ζ(10) =
π10

93555
ζ(12) =

691π12

638512875

ζ(2n) =
(−1)n−1(2π)2nB2n

2(2n)!
B2n = Bernoulli number
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Bernoulli’s Objections

• Infinite products? No he liked that.

• What about complex zeros of sinπx? Euler agreed

• What about ex sin(πx)? (Has the same zeros)

• (The infinite product is obviously not ex sin(πx).)

• Euler thought this was a wonderful technic and as
good as any other solution. So did Riemann.



Infinite products
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Infinite products

•
∏N

n=1(1− an) converges ⇐⇒ its log converges.

• The tangent approximation log(1− x) ≈ −x.

•
∑N

n=1 log(1−an) converges ⇐⇒
∑N

n=1 an converges

• So the RHS, πx
∏

(1 − x2

n2) converges since
∑

x2

n2

converges. But does it converge to sin(πx)?

• log ζ(s) can be similarly written as function of its
zeros.
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Zero hocus pocus I
sinx has zeros at nπ, sin(x− π/2) has zeros at nπ/2

for odd n, so sinx cosx has zeros at nπ/2.

But sin 2x has zeros at nπ/2 so if you could use the
zero’s to determine a function, then
sin 2x = k sinx cosx some constant k.

But this is TRUE. It is the double angle formula
sin 2x = 2 sinx cosx.



Zero hocus pocus II
Let g(x) = xeγx

∏
e−x/n(1 + x/n). Note g(x) has

zeros at 0,−1,−2, · · · and g(1) = 1
Note xg(x+ 1) also has the same set of zeros and

the same value at x = 1, then
xg(x+ 1) = g(x)

Since g(x) is zero at 0,−1,−2, · · · , then g(1− x) is
zero at 1, 2, 3, · · · , then g(x)g(1− x) = k sin(πx)



Zero hocus pocus II
Let g(x) = xeγx

∏
e−x/n(1 + x/n). Note g(x) has

zeros at 0,−1,−2, · · · and g(1) = 1
Note xg(x+ 1) also has the same set of zeros and

the same value at x = 1, then
xg(x+ 1) = g(x)

Since g(x) is zero at 0,−1,−2, · · · , then g(1− x) is
zero at 1, 2, 3, · · · , then g(x)g(1− x) = k sin(πx)

Γ(x) = 1/g(x), these formula translate to
Γ(x+ 1) = xΓ(x) so that Γ(n+ 1) = n! and

Γ(x)Γ(1− x) = π/ sin(πx)
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Whats your real domain?
Series

∑
xn = 1/(1− x), the LHS only makes sense

for |x| < 1 but the RHS makes sense for x 6= 1.

Series
∑
n−x only makes sense for x > 1, but ζ(x) is

(eventually) defined for x 6= 1.

Series
∑

(−1)n+1n−x = η(x) converges for x > 0, can
be used to extend ζ(x).

1/(n+ 1)x − 1/nx is about −x/nx+1



η(x) = (1− 21−x)ζ(x)

2ζ(x)/2x = 2(1/2x1x + 1/2x2x + 1/2x3x + 1/2x4x + · · · )
= 2(1/2x + 1/4x + 1/6x + 1/8x + · · · )

η(x) = 1− 1/2x + 1/3x − 1/4x + 1/5x − 1/6x + · · ·
= 1 + 1/2x + 1/3x + 1/4x + 1/5x + 1/6x + · · ·

− 2(1/2x + 1/4x + 1/6x + · · · )
η(x) = (1− 21−x)ζ(x)

ζ(x) = (1− 21−x)−1η(x)



Nonsense or Common Sense?

η(−1) = 1− 21 + 31 − 41 + · · · = 1/4

η(−2) = 1− 22 + 32 − 42 + · · · = 0

η(−3) = 1− 23 + 33 − 43 + · · · = −1/2

η(−4) = 1− 24 + 34 − 44 + · · · = 0

η(−5) = 1− 25 + 35 − 45 + · · · = 1/4

η(−6) = 1− 26 + 36 − 46 + · · · = 0

η(−7) = 1− 27 + 37 − 47 + · · · = −17/16



Geometric Series

1 + x+ x2 + x3 + x4 + · · · = 1
1− x

|x| < 1

This series explodes as x→ 1 (x→ 1−) But
1/(1− x) is continuous at x = −1, hence

lim
x→−1+

1
1− x

=
1

1−−1
=

1
2

A slight(?) abuse of notation yields

η(0) = 1− 1 + 1− 1 + 1 · · · = 1
2



Operate by x d
dx, limit as x→ −1+

1 + x+ x2 + x3 + x4 + · · · = 1
1− x

|x| < 1

0 + 1 + 2x+ 3x2 + 4x3 + · · · = 1
(1− x)2 |x| < 1

x+ 2x2 + 3x3 + 4x4 + · · · = x

(1− x)2 |x| < 1

−1 + 2− 3 + 4− · · · = −1
(1−−1)2 =

−1
4

η(−1) = 1− 2 + 3− 4 + · · · = 1/4



Operate by x d
dx, limit as x→ −1+

x+ 2x2 + 3x3 + 4x4 + · · · = x

(1− x)2 |x| < 1

1 + 22x1 + 32x2 + 42x3 + · · · = 1 + x

(1− x)3 |x| < 1

x+ 22x2 + 32x3 + 42x4 + · · · = x(1 + x)
(1− x)3 |x| < 1

−η(−2) = −1 + 22 − 32 + 42 − · · · = −1(1 +−1)
(1−−1)3 = 0



More Terms

13x+ 23x2 + 33x3 + · · · = x(1 + 4x+ x2)
(1− x)4

η(−3) =
−2
16

=
−1
8

14x+ 24x2 + 34x3 + · · · = x(1 + x)(1 + 10x+ x2)
(1− x)5

η(−4) = 0



See the Pattern?

n 2 3 4 5 6 7 8
1− n −1 −2 −3 −4 −5 −6 −7

ζ(n) π2

6 ? π4

90 ? π6

945 ? π8

9450
1− 21−n 1

2
3
4

7
8

15
16

31
32

63
64

127
128

η(1− n) 1
4 0 −1

8 0 1
4 0 −17

16
η(1−n)
η(n)

3
1 ·

1!
π2 0 −15

7 ·
3!
π4 0 63

31 ·
5!
π6 0 −255

127 ·
7!
π8

sign +1 0 −1 0 +1 0 −1
cos πn2 +1 0 −1 0 +1 0 −1

90 = 15 · 3!, 945 = 63 · 3 · 5, 255 = 3 · 5 · 17,
9450 = (3 · 5)(3 · 5 · 6 · 7)



Final Equations

ζ(x) =
∑
n

1
nx

x > 1

ζ(x) = (1− 21−x)−1η(x) x > 0, x 6= 1

ζ(x) = (1− 21−x)−1 lim
t→−1+

∑
n

tn

nx
x 6= 1

ζ(1− x) = ζ(x)π−x 21−x x! cos
πx

2∑
n

1
ns

=
∏
p

(1− 1
ps

)−1 Golden Key


