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¢ zeros and the Riemann Hypothesis




Zeta is built into Maple
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Euler, the master of us all




The Basel Problem
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It 1s almost
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Guess the polynomial



Guess the polynomial

p(xz) has degree 2 az’ + bxr + ¢
and p(2) =0 (x — 2)(px + q)
and p(—1) =0 k(x +1)(x —2)

and p(0) =6 —3(x —2)(zx+1)



Guess the polynomial

p(x) has degree 2 ar® + bxr + ¢
and p(2) =0 (z — 2)(pz + q)
and p(—1) = 0 k(z + 1)(z — 2)
and p(0) = 6 _3(x—2)(z + 1)



Knowing nothing is almost everything

C1,Ca, - . . c, are the zeros of a polynomial p(z), and
x = (0 i1s not a zero, then

p(x) =p0)(1 —z/c1)(1 —x/ca) - (1 —x/cp).

If polynomial ¢(0) = 0, and 0 is a root k£ times,
then p(z) = ¢(z) /2" is non-zero at 0 and

q(z) = 2"p(0)(L — x/cr) (1 — w/co) -+ (1 = w/cn)

p(z) = p(0) [I(1 —z/ci).



Lets make sin a honorary polynomial

. sinx : :
lm% =1 zero 1s a single root
xr— €T
sin(7a)
=0 for xz=41,%+2,43...
T
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Series for the product
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Basel solved, coefficents of z*

sinmx = mx H(l — %)
, sz
SINT = X 3] | 1
| 133 55
SINTTX = TTX 3] | 1
= 1 1
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Coefficents of z° and ((4)
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((2n) = 22! Bs, = Bernoulli number
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Bernoulli’s Objections

Infinite products? No he liked that.

What about complex zeros of sin mx? Euler agreed
What about e’ sin(7x)? (Has the same zeros)
(The infinite product is obviously not e”sin(mx).)

Euler thought this was a wonderful technic and as
good as any other solution.



Bernoulli’s Objections

Infinite products? No he liked that.

What about complex zeros of sin mx? Euler agreed
What about e’ sin(7x)? (Has the same zeros)
(The infinite product is obviously not e”sin(mx).)

Euler thought this was a wonderful technic and as
good as any other solution. So did Riemann.



Infinite products

I1".,(1 — a,) converges < its log converges.

n=1

The tangent approximation log(1l — z) ~ —=.
ij:l log(1—a,) converges <> ij:l a, converges

So the RHS, 7wz ]](1 — 5‘7—2) converges since Z%

n2

converges. But does it converge to sin(7z)?



Infinite products

I1".,(1 — a,) converges < its log converges.

n=1

The tangent approximation log(1l — z) ~ —=.
ij:l log(1—a,) converges <> 25:1 a, converges

So the RHS, 7wz ]](1 — 5‘7—2) converges since Zi—z

n2

converges. But does it converge to sin(7z)?

log ((s) can be similarly written as function of its
Zeros.
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sin x has zeros at n, sin(x — 7/2) has zeros at nn/2
for odd n, so sinx cosx has zeros at nw/2.
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But sin 2x has zeros at n7/2 so if you could use the
zero’s to determine a function, then
sin 2x = ksin x cos x some constant k.



Zero hocus pocus |

sin x has zeros at n, sin(x — 7/2) has zeros at nn/2
for odd n, so sinx cosx has zeros at nw/2.

But sin 2x has zeros at n7/2 so if you could use the
zero’s to determine a function, then
sin 2x = ksin x cos x some constant k.

But this is TRUE. It is the double angle formula
Sln 2x = 2 SIn & CoS .



Zero hocus pocus ||
Let g(z) = 2 [[ e */"(1 4+ 2/n). Note g(x) has
zeros at 0,—1,—2,--- and ¢g(1) =1
Note zg(z + 1) also has the same set of zeros and
the same value at x = 1, then
rg(r +1) = g(z)

Since g(x) is zero at 0,—1,—2,---, then g(1 — x) is

zero at 1,2,3,---, then ¢g(z)g(1 — z) = ksin(7x)



Zero hocus pocus ||
Let g(z) = 2 [[ e */"(1 4+ 2/n). Note g(x) has
zeros at 0,—1,—2,--- and ¢g(1) =1
Note zg(z + 1) also has the same set of zeros and
the same value at x = 1, then
rg(r +1) = g(z)

Since g(x) is zero at 0,—1,—2,---, then g(1 — x) is

zero at 1,2,3,---, then ¢g(z)g(1 — z) = ksin(7x)

['(x) =1/g(x), these formula translate to
['(x+1) =al'(z) so that I'(n + 1) = n! and
['(x)['(1 — z) = n/sin(wx)
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Whats your real domain?

Series > 2" =1/(1 — x), the LHS only makes sense
for || < 1 but the RHS makes sense for = #~ 1.

Series > n~" only makes sense for z > 1, but ((x) is
(eventually) defined for x # 1.

Series Y (—1)""'n~* = n(z) converges for x > 0, can
be used to extend ((x).

1/(n+1)* —1/n* is about —z/n*"!



n(z) = (1 —-277)((x)

20 () /2% = 2(1/2°1% + 1/2%2% + 1/2%3% 4+ 1/274% + - - )
=2(1/2"+1/4"+1/6"+1/8" +--+)
n(z) =1-1/2"+1/3" = 1/4" +1/5" — 1/6" + - --
=1+1/2"4+1/3"+1/4"+1/5"+1/6" + - --
—2(1/2° 4+ 1/4" +1/6" + - --)
n(z) = (1-2"")¢(2)
C(x) = (1=27")"n(x)



Nonsense or Common Sense?
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Geometric Series

1
l+x+a®+z°+a*+- =
L — a

| <1

This series explodes as * — 1 (z — 17) But
1/(1 — x) is continuous at x = —1, hence

, 1 1 1
lim — — —
r——1+1—2 1—-—1 2

A slight(?) abuse of notation yields

1
n0)=1-1+1-1+1- =



Operate by x , imitas x — —17

1—|—:13—|—x2+933—|—$4+---:1_x z| < 1
1
O+1+2:13+3:1:‘2+4:E3+~--:(1 E z| < 1
— X
:13+2:132+3:E3+4a:'4—|—~-:(1_xx)2 2| < 1
—1 —1
—14+2—-3+4—-..-= — _ -
T 1—-17 4

n(-1)=1—-2+3—-4+---=1/4



Operate by x , imitas x — —17

L

$+2x2+3x3+4a¢4+~~:(1_m)2 2| < 1
1
1—|—223:1—|—32:132—|—42:1;’3+---:(1_HE)3 | <1
— X
1
T 4 2%2° 4 3% 4 4%t 4 - = ‘fi _2?3 2| < 1
—1(1+ —1
—n(—2)=—-14+2°—3°4+4"—... = 1+ ):0

(1— 1)



More Terms

r(1 + 4z + x?)

1P+ 802 335+ ... =

(1 —o)*
—2 —1
—3
14 4 942 4 343 (14 z)(1 + 10z + z°)
(1 —m)°



See the Pattern?

n 2 3 4 5) 0 7 8

l—n| —1 | =2 —3 —4 | =5 | —6 —7
¢(n) %2 ! g_g ! % ! 92::0

1 — 9l-n 1 3 7 15 31 63 127
2 4 3 16 32 64 123

nl—n)| 1 | O = 0 . 0 "

e e I N

sign | +1 0 —1 0 +1 0 —1
cos— +1 0 —1 0 +1 0 —1
90—15 3!, 945 =63 - 3 - 5, 200 =3-5-17,

9450 = (3-5)(3-5-6 - 7)




C(z) =

C(r) =

¢(1 — =)

1
2w

= ((z)m 21 " 1! COS — -

Final Equations

mn

(1 -2 "n(x) x>0, #1

(1 —27) 1hmz: xr % 1
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