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The Principle (naive version)

If f and g have the same zero’s,
then f/g is constant.

Multiplicities: require an% £ 0 at
each zero c so that g iIs continuous and
never zero.

Singlarity problems: f(x)/(1+ z?%).
Growth problems: e“f(x).

Non-naive form for entire functions,
Hadamard 1893, but dates to at least
Euler 1735.

cases: polys, sin, gamma, and zeta.



Guess the polynomial

p(z) has degree 2 ar® + bxr + ¢
and p(2) =0 (z = 2)(pz + q)
and p(—1) = 0 k(z + 1) (z — 2)
and p(0) = 6 —3(z — 2)(x + 1)



Knowing nothing is almost
everything

c1,Co, . ..cC, are the zeros of a polynomial
p(z), and = = 0 is not a zero, then

p(@) = p(0)(1 = Z)(1 = 2)-- (1= 2).

If polynomial ¢(0) = 0, and O is a root &
times, then p(z) = ¢(z)/z" is non-zero
at 0 and



The Greatest Unsolved Problem:
the Riemann Hypothesis
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The popular press has declared the
Riemann Hypothesis the greatest
unsolved problem in mathematics.



RH: ( zeros all on the critical line
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Walking the critical line

157
As p runs over primes and p runs over
non-trivial zero’s of (.
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The Basel Problem
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It 1s almost
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Solved by Euler in 1735. Famous
problem popularized by Jakob Bernoulli

1689 but dates from before.
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Euler had a better estimates — in fact
he showed
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Lets make sin a honorary

polynomial
. silnx . .
lim =1 zero 1s a single root
x—0 X
sin(7a)
=0 for x= 1, 2,::3...
T
sin(7wx)= mx H (1 ——
a:2 x



Series for the product
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Basel solved, coefficents of z*

X
sinmx = wx H(l — —)
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Bernoulli’s Objections

Infinite products?
What about complex zeros of sin 7x?

What about ¢”sin(7mz)? (Has the same
zeros)

Euler 1735 thought this was a
wonderful technic and as good as any
other solution. So did Riemann 1859.
Hadamard actually proved the technic
in 1893.



Infinite products

HN (1 — a,) converges <= its log

n=1
converges.

The tangent approx log(l — z) ~ —zx.

qu\;l log(1 — a,) converges =
S @, converges

2

So the RHS, 7z ][(1 — %) converges
since Z% converges. But does it
converge to sin(7z)?

log((s) can be similarly written as
function of its zeros.



Zero hocus pocus |

sinx has zeros at nw, sin(x — 7/2) has
zeros at nw/2 for odd n, so sinx cosx
has zeros at nr /2.

But sin 2z has zeros at nw/2 so if you
could use the zero’'s to determine a
function, then sin 2z = ksin x cos x some
constant k.

But this is TRUE. It is the double angle
formula sin 2z = 2sin x cos .



Translation

gy(x) =T H (1 — %)
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Compare factors of gy(x) and gy(z + 1).
The two red balls don’t match but the
others line up with (1 — 2*-) and

n—1
(1 — 1) having a zero at n — 1 and
ratio — which exactly cancels the ratio

at —n. Fix x and let N > |z|, then the
two red factors are ~ 1 at x. Thus
g(x) = lim gy(x) has period 1

g(z) = g(x + 1)




Dilation
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Separate the product into even and odd
n we almost get 2gy(z)gn(z + %) missing
only by the red ball. When N > |z|, red
factor ~ 1 as before, thus

g(x) = lim gy(z) satisfies the fun eqn

g(2x) = 2g(x)g(x + )



Zero hocus pocus |l

Let g(z) = 2ze?* [ e */"(1 + 2/n). Note
g(x) has zeros at 0,—1,—2,--- and
g(1) =1
Note zg(x + 1) also has the same set of
zeros and the same value at r = 1, then
zg(z +1) = g(z)

Since ¢g(x) is zero at 0,—1,—2,---, then
g(1 —x) is zero at 1,2,3,---, then
g(x)g(1 — x) = ksin(mx)

['(x) =1/g(x), these formula translate
tol'(z+1) =a'(x) so that I'(n+ 1) = n!
and I'(z)['(1 — x) = n/sin(7x)



Cot and the Herglotz Trick

1 1 1
b = — | Z
T cot T x+§n:(x+n x_n)azg
Let f(x) be rhs, and let
A
— 1
g(x) %nnZN$+n

Claim both f and g are (i) continuous
off Z; (ii) have period 1; (iii) odd and
(iv) satisfy the functional equation

€T r+ 1
F(— F
C)+ P

) = 2F (x)



Let h(x) = f(x) — g(x). Extend h(n) =0,
then h is continuous, odd, periodic and
satisfies the functional equation. It
follows that £ is identically zero.

Ci2 C (C+1)12

Let M be the maximum value of / and
suppose c is so that h(c) = M. Both
h(£), h(%t) < M and the fun eqn says
their average is M, so h(35) = M.

Iterating 0 = lim,, h(5;) = M.



