Using Scilab to teach ODE Topics

Steven F. Bellenot

Department of Mathematics Florida State University

Math Tech, Valdosta State University, Valdosta, GA, Feb 25, 2011

ODE solving in Scilab

Solving the IVP

$$\frac{dy}{dt}=f(t,y) \qquad y(t_0)=y_0$$

- define the function f(t,y)
- time steps: ts = t0:delta:tf;
- ode solver: y = ode(y0, t0, ts, f);
- solves $\frac{dy}{dt} = f(t, y), \quad y0 = y(t0)$
- the output y has values for t at the time steps given by ts

ODE solving in Scilab

Solving the IVP

$$\frac{dy}{dt}=f(t,y) \qquad y(t_0)=y_0$$

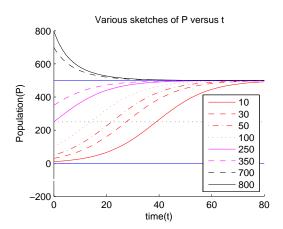
- define the function f(t,y)
- time steps: ts = t0:delta:tf;
- ode solver: y = ode(y0, t0, ts, f);
- solves $\frac{dy}{dt} = f(t, y), \quad y0 = y(t0)$
- the output y has values for t at the time steps given by ts

Logistic Population Growth

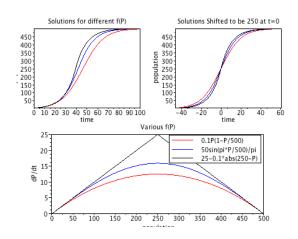
$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

```
function dPdt = logistic(t, P)
dPdt = rate * P .* (1 - P/capacity); //dot star
endfunction
rate = 0.1; capacity = 500;
w0 = [10;30;50;100;250;350;700;800];
odeCheckPlot(w0,0,0:80,logistic);
```

Logistic I



Logistic II Student Problem

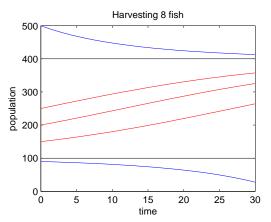


Logistic with Harvesting

$$\frac{dP}{dt} = rP(1 - \frac{P}{K}) - h$$

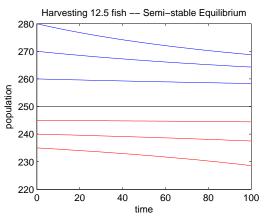
By adding harvesting the topic of stability of equilibrium solutions arises naturally and examples of stable, unstable and semi-stable solutions all appear.

Harvest I



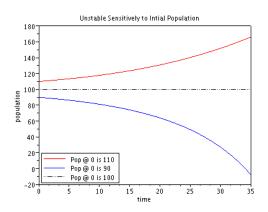
When h = 8, P = 400 is stable, P = 100 is unstable.

Harvest II



When h = 12.5, P = 250 is semi-stable.

Harvest III Student Problem



SIR Model of an Epidemic

$$\begin{aligned} \frac{dS}{dt} &= -\lambda SI \\ \frac{dI}{dt} &= \lambda SI - \mu I \\ \frac{dR}{dt} &= \mu I \end{aligned}$$

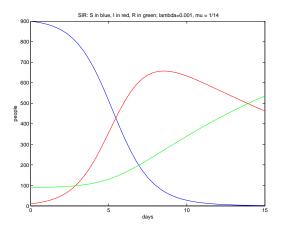
Inflection peak when $S=\mu/\lambda$ is one measure of the inflection. Another is sick days.

SIR Model of an Epidemic

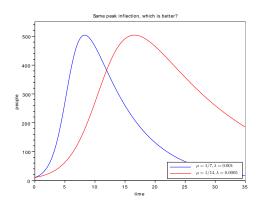
$$\begin{aligned} \frac{dS}{dt} &= -\lambda SI \\ \frac{dI}{dt} &= \lambda SI - \mu I \\ \frac{dR}{dt} &= \mu I \end{aligned}$$

Inflection peak when $\mathcal{S}=\mu/\lambda$ is one measure of the inflection. Another is sick days.

SIR I



SIR II Student Problem



Predator Prey, The Lotka-Volterra Model

$$\frac{dC}{dt} = \alpha C - \lambda CR$$
$$\frac{dR}{dt} = -\beta R + \mu CR$$

C(t) Extrema when $R = \alpha/\lambda$, R(t) Extrema when $C = \beta/\mu$

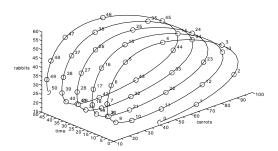
Predator Prey, The Lotka-Volterra Model

$$\frac{dC}{dt} = \alpha C - \lambda CR$$
$$\frac{dR}{dt} = -\beta R + \mu CR$$

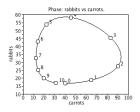
C(t) Extrema when $R = \alpha/\lambda$, R(t) Extrema when $C = \beta/\mu$

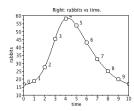
Prey I Phase Space

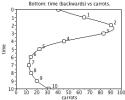
Adding a third dimension: locations are time in years.



Prey II Student Problem







Chemotherapy of the Lawn

Without weed killer

$$\frac{dW}{dt} = r_W W (1 - \frac{W}{100})$$
$$\frac{dH}{dt} = r_H H^2 (1 - \frac{H}{100})$$

With weed killer

$$\frac{dW}{dt} = -\beta_W W$$

$$\frac{dH}{dt} = -\beta_H H$$

Gene of time periods where weed killer is applied.

Chemotherapy of the Lawn

Without weed killer

$$\frac{dW}{dt} = r_W W (1 - \frac{W}{100})$$
$$\frac{dH}{dt} = r_H H^2 (1 - \frac{H}{100})$$

With weed killer

$$\frac{dW}{dt} = -\beta_W W$$
$$\frac{dH}{dt} = -\beta_H H$$

Gene of time periods where weed killer is applied.

Chemotherapy of the Lawn

Without weed killer

$$\frac{dW}{dt} = r_W W (1 - \frac{W}{100})$$
$$\frac{dH}{dt} = r_H H^2 (1 - \frac{H}{100})$$

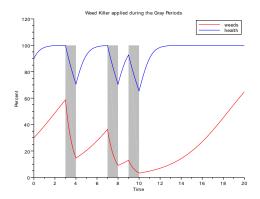
With weed killer

$$\frac{dW}{dt} = -\beta_W W$$

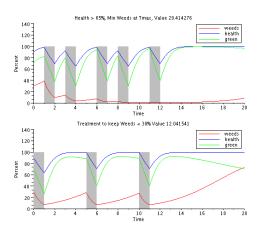
$$\frac{dH}{dt} = -\beta_H H$$

Gene of time periods where weed killer is applied.

Chem I



Chem II Student Problem



2nd Order Example: Damped Pendulum

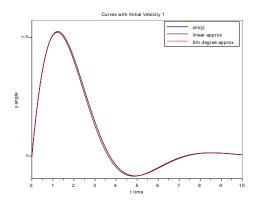
$$y'' + y' + \sin(y) = 0$$

$$y'' + y' + y = 0$$

$$y'' + y' + y - \frac{y^3}{6} = 0$$

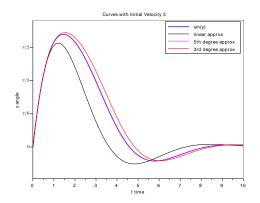
$$y'' + y' + y - \frac{y^3}{6} + \frac{y^5}{120} = 0$$

Swing I



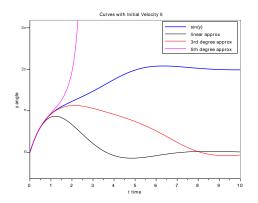
$$y(0) = 0, y'(0) = 1$$

Swing II



$$y(0) = 0, y'(0) = 3$$

Swing III



$$y(0) = 0, y'(0) = 5$$

