(1) Consider an undirected network with \(n \) vertices and adjacency matrix \(A \). Suppose the edges are weighted, each with weight \(\alpha \).

- What is the total number of paths of length \(r \) between two vertices \(s \) and \(t \)?

- What is the sum of the weights of paths of length \(r \) between \(s \) and \(t \)?

- What is the sum of the weights of all paths of length \(r \) or less between \(s \) and \(t \)?

- What does this last sum converge to in the limit \(r \to \infty \)? (Hint: you did this in calculus, but with a scalar variable \(x \) rather than a matrix)
(2) The vertex degrees can be collected into a vector \vec{k}.

- Suppose that the degree vector for a simple undirected (and unweighted) network is $\vec{k} = (2, 2, 3, 3, 2)$. Give a plausible adjacency matrix A for the network.

- Next consider a simple directed network with in-degree and out-degree vectors $\vec{k}^{\text{in}} = (3, 3, 2, 3, 2)$ and $\vec{k}^{\text{out}} = (3, 3, 3, 3, 1)$. Give a plausible adjacency matrix B.

- What is the network density for each of these networks?
What is the size k of the minimum vertex cut set between X and Y in the network below? Prove your result by finding one possible cut set of size k and one possible set of k vertex-independent paths between X and Y. Why do these two actions constitute a proof that the minimum cut set has size k?
(4) Consider diffusion on a connected network with \(n \) vertices and diffusion coefficient \(C \). Then the spectral solution of the diffusion equation on the network is

\[
\vec{\psi}(t) = \sum_{j=1}^{n} a_j(0)e^{-C\lambda_j t} \vec{v}_j.
\]

- What do we know about the eigenvalues \(\lambda_j \) and eigenvectors \(\vec{v}_j \) of the graph Laplacian?

- How can you determine values of \(a_j(0) \)?

- What happens to \(\vec{\psi}(t) \) in the limit \(t \to \infty \)?

- Suppose that \(\vec{\psi}(0) = \kappa \vec{v}_3 \). What would be the values of the \(a_j(0) \)? Write down the spectral solution in this case.

- In this case, what would \(\vec{\psi}(t) \) approach as \(t \to \infty \) and at what rate?