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The	Lorenz	Equations
The	solution	can	be	understood	using	Fourier	analysis,	with	an	infinite	number
of	coefficients	to	be	determined.	That	is,	a	system	with	an	infinite	number
of	non-linear	ordinary	differential	equations.	In	1963,	Ed	Lorenz	simplified	this	
to	3,	by	setting	all	others	to	constants.	

�̇� = 𝑟𝑥 − 𝑦 − 𝑥𝑧

�̇� = 𝑥𝑦 − 𝑏𝑧

�̇� = 𝜎(𝑦 − 𝑥)

x =	“convective	overturning”

y	=	horizontal	temperature	variation

z =	vertical	temperature	variation

𝜎 =	Prantl number

r =	Rayleigh	number

b =	related	to	physical	size	of	the	system

Ed	Lorenz
MIT



Heat	Conduction	Pathways
The	heat	introduced	from	below	is	transported	up	in	two	ways:
thermal	diffusion	(stationary	fluid)	and	thermal	convection	(fluid
in	motion).	

Rayleigh	number	(r)	=	 time	scale	for	thermal	diffusiontime	scale	for	thermal	convection

If	r is	low,	then	the	heat	is	quickly	dissipated	through	diffusion	and	the	fluid
remains	stationary.	Past	some	critical	value	of	r,	the	fluid	begins	to	move
and	forms	convection	rolls.	For	r significantly	larger	the	fluid	becomes	
turbulent	(e.g.,	boiling	water).	

Lorenz	examined	the	behavior	of	his	simple	model	as	r was	increased
from	low	to	high.



Equilibria	of	the	Lorenz	Equations

In	the	case	in	which	heat	dissipation	dominates,	there	is	no	convective
overturning	(𝑥 = 0),	and	no	vertical	or	horizontal	temperature	
variation	(𝑦 = 𝑧 = 0).	This	homogeneous	solution	is	the	only	equilibrium	
when	𝑟 < 1.	He	used	𝜎 = 10	and 𝑏 = @

A⁄ .

These	equilibria	both	lose	stability	at	a	Hopf bifurcation	at	𝑟C ≈ 24.74.	

What	is	the	behavior	for	𝑟 > 𝑟C?

These	reflect	fluid	motion	and	heat	is	transmitted	through	convection	as
well	as	diffusion.	

There	is	a	supercritical	pitchfork	bifurcation	at	𝑟 = 1,	beyond	which
the	two	stable	non-homogeneous	equilibria	are:

𝐶L =
𝑏(𝑟 − 1)�

𝑏(𝑟 − 1)�

𝑟 − 1

and 𝐶N =
− 𝑏(𝑟 − 1)�

− 𝑏(𝑟 − 1)�

𝑟 − 1



Trajectories	Remain	Bounded

When	𝑟 > 𝑟C it	is	possible	that	solutions	tend	to	±∞.	We	can	use	a
Lyapunov-like	function	to	show	that	this	does	not	happen.		

Consider	the	function	𝑉 𝑥, 𝑦, 𝑧 = 𝑟𝑥S + 𝜎𝑦S + 𝜎(𝑧 − 2𝑟)S.

The	equation	𝑉 𝑥, 𝑦, 𝑧 = 𝑣 for	𝑣 > 0 defines	an	ellipsoid	centered	at	the
point	(0,0,2r).	Call	this	ellipsoid	𝐸W.

Proposition: There	exists	𝑣∗	such	that	any	trajectory	that	starts	outside
the	ellipsoid	𝑉 = 𝑣∗ eventually	enters	this	ellipsoid	and	remains	
trapped	for	all	future	time.

E1

(We	use	an	ellipse
since	it	is	easier	to	
draw	than	an	ellipsoid)



Trajectories	Remain	Bounded
Proposition: There	exists	𝑣∗	such	that	any	trajectory	that	starts	outside
the	ellipsoid	𝑉 = 𝑣∗ eventually	enters	this	ellipsoid	and	remains	
trapped	for	all	future	time.

Proof:	Compute

�̇� = −2𝜎 𝑟𝑥S + 𝑦S + 𝑏 𝑧S − 2𝑟𝑧

�̇� = −2𝜎(𝑟𝑥S + 𝑦S + 𝑏 𝑧 − 𝑟 S − 𝑏𝑟S)or

But 𝑟𝑥S + 𝑦S + 𝑏(𝑧 − 𝑟)S= 𝜇

is	itself	an	ellipsoid	when	𝜇 > 0,	and	when	𝜇 > 𝑏𝑟S we	have	�̇� < 0.



Trajectories	Remain	Bounded

In	particular,	denote	the	ellipsoid	𝑟𝑥S + 𝑦S + 𝑏(𝑧 − 𝑟)S= 𝑏𝑟S as	𝐸S.

E2

We	can	now	pick	a	number	𝑣∗ large	enough	so	that	ellipsoid	𝐸Wcontains
ellipsoid	𝐸S.	

�̇� < 0



Trajectories	Remain	Bounded

Then	�̇� < 0 for	all	𝑣 > 𝑣∗and	trajectories	starting	outside	E1 eventually
enter	it.	

As	a	consequence,	all	trajectories	starting	far	from	the	origin	are
attracted	to	a	set	that	is	contained	within	the	ellipsoid	𝑉 𝑥, 𝑦, 𝑧 = 𝑣∗,
so	all	trajectories	are	bounded.

E1

E2

(𝑉 = 𝜐∗)

�̇� < 0



What	is	the	Volume	of	the	Attractor?
We	have	shown	that	for	all	𝑟 > 0 the	trajectories	remain	bounded.	So
for	𝑟 > 𝑟C	there	must	be	an	attractor.	What	is	its	volume?	In	theory,
it	could	be	quite	large.	

div	�⃗� = 	\
𝜕𝐹
𝜕𝑥^

A

^_W

It	measures	how	fast	volumes	change	under	the	flow	𝜙a of	�⃗� �⃗� .	

Let	𝑉 𝑡 denote	the	volume	of	𝐷(𝑡),	and	�⃗� �⃗� be	the	vector	field	for	
a	3-D	system	of	ODEs.	The	divergence	of	this	vector	field	is

Let	𝐷(0) be	a	compact	region	in	phase	space.	Then	denote	the	trajectory
from	a	point	starting	in	𝐷(0) as	𝜙a.	This	is	also	called	“the	flow”	from	that
point.	The	flow	set	at	time	t from	points	starting	in	𝐷(0) is	then	𝐷 𝑡 = 𝜙a 𝐷 .

D(0)
D(t)

𝜙a



What	is	the	Volume	of	the	Attractor?

There	is	a	theorem,	called	Liouville’s theorem,	that	relates	the	rate	of	change	of	
volume	in	phase	space	to	the	divergence	of	the	velocity	vector	field:

𝑑𝑉
𝑑𝑡 = e div	�⃗�𝑑𝑥𝑑𝑦𝑑𝑧

f(a)

For	the	Lorenz	equations	the	divergence	is	constant:	div	�⃗� = −(σ + 1 + 𝑏),	so

𝑑𝑉
𝑑𝑡 = − 𝜎 + 1 + 𝑏 𝑉

With	solution

𝑉 𝑡 = 𝑉(0)𝑒N iLWLj a

So	trajectories	move	exponentially	quickly	to	an	attractor	of	volume	0.	

where	V is	the	volume	of	the	flow	set	D.



What	is	the	Attractor?

For	𝑟 < 𝑟C the	attractor	is	one	or	more	equilibria.	What	about	for	𝑟 > 𝑟C?

If	you	linearize	about	the	equilibrium	at	the	origin,	you	see	that	there	are
two	real	negative	eigenvalues,	and	one	real	positive	eigenvalue.	The	flow
near	the	origin	appears	as	below:	

Hirsch,	Smale,	Devaney



What	is	the	Attractor?

The	figure	below	shows	numerical	solutions	extending	the	two	
branches	of	the	unstable	manifold	of	the	equilibrium	at	the	origin.

The	equilibria	denoted	as	𝑄L and	𝑄N are	what	we	denoted	as	
𝐶L and 𝐶N,	respectively.

Hirsch,	Smale,	Devaney



A	Strange	Looking	Attractor

If	we	do	this	again,	but	continue	for	longer	times,	we	get	the	following:

This	is	called	the	Lorenz	attractor.	It	is	an	example	of	what	are	now
called	strange	attractors.

Hirsch,	Smale,	Devaney



Animation	of	Flow	on	the	Lorenz	Attractor



Chaos



A Time	Course	on	the	Lorenz	Attractor

For	a	trajectory	that	is	attracted	to	the	Lorenz	attractor,	what	does	the
time	course	look	like?

There	is	little	order,	and	it’s	impossible	to	predict	at	one	point	to	the	next
whether	x will	be	positive	or	negative.	Positive	xmeans	the	phase	point	is	on	
one	“wing”	of	the	strange	attractor,	while	negative	xmeans	it	is	on	the	other	
wing.



This	Looks	Chaotic

A	time	course	like	this	is	called	chaotic,	for	obvious	reasons.

But	how	does	one	formally	define	chaos?



Follow	the	Blob
Suppose	you	start	with	a	small	blob	of	points	on	or	near	the	Lorenz	
attractor	in	phase	space.	For	attractors	like	equilibria	or	limit	cycles,	a	blob
of	points	near	the	attractor	would	contract	as	the	trajectories	moved	towards
the	attractor.		What	happens	to	the	blob	on	the	Lorenz	attractor?

Initial	blob
(in	red)



Follow	the	Blob

A	little	later	in	time



Follow	the	Blob

A	little	later	in	time



Follow	the	Blob

A	little	later	in	time



A	Nice	Video

https://www.youtube.com/watch?v=FYE4JKAXSfY



Definition	of	Chaos

A	dynamical	system	is	chaotic	if	it	is	sensitive	to	initial	conditions	

Two	time	courses	starting	from	almost-identical	initial	conditions

This	is	why	prediction	is	impossible	for	chaotic	systems.



Local	Lyapunov Spectrum
Typically,	the	expansion	of	the	initial	sphere	is	different	along	different	axes.
The	sphere	first	deforms	into	an	ellipsoid,	with	three	axes,	�⃗�,	𝑏,	and	𝑐.	There
will	be	a	Lyapunov exponent	associated	with	each	axis,	so	𝜆o,	𝜆j,	and	𝜆p.	
The	size	of	the	axis	increases	or	decreases	proportional	to	𝑒qra.	

These	are	the	Lyapunov spectrum,	and	for	a	chaotic	system	at	least	one	𝜆s > 0.



The	Chaotic	Waterwheel

In	the	1970s	Lou	Howard	and	William	Malkus came	up	with	a	mechanical	
model	of	the	Lorenz	equations.	It	consists	of	a	toy	waterwheel	with
leaky	paper	cups	and	a	water	source	at	the	top.

At	low	flow	rates	the	wheel	turns	slowly	in	one	direction	or	the	other.

Lou	Howard



The	Chaotic	Waterwheel

At	higher	flow	rates	the	wheel	turns	faster,	but	in	one	direction	or	the	other.



The	Chaotic	Waterwheel

At	even	higher	flow	rates	the	wheel	turns	one	way,	and	then	the	other,
since	the	leak	out	of	the	cups	is	too	slow	to	compensate	for	the
inflow.	Heavy,	water-filled	cups	oppose	the	spinning	of	the	wheel	and
make	it	spin	the	other	way.	The	spins	reverse	orientation	in	a	chaotic	
manner	when	the	flow	is	large	enough.



The	Chaotic	Waterwheel

https://www.youtube.com/watch?v=FmhKN1Hx7z4



Bifurcation	Analysis	of	the	
Lorenz	System



Analysis	for	Small	Values	of	r

As	discussed	previously,	the	Lorenz	system	(with	𝜎 = 10 and	𝑏 = @
A
)	has

a stable	equilibrium	at	the	origin	for	𝑟 < 1.	There	is	a	pitchfork	bifurcation
at	𝑟 = 1,	and	a	Hopf bifurcation	at	𝑟 ≈ 24.74.	The	bifurcation	diagram	looks
like	the	following:



Analysis	for	Small	Values	of	r
What	happens	to	the	branches	of	unstable	limit	cycles?	Are	there	saddle-node
of	periodic	bifurcations,	where	the	limit	cycles	turn	around	and	become	stable?

No,	the	unstable	periodic	branch	terminates	at	a	homoclinic bifurcation
at	𝑟 ≈ 13.926.



Transient	Chaos
In	the	parameter	interval	between	the	homoclinic and	the	Hopf bifurcations
the	system	exhibits	transient	chaos.



Transient	Chaos

The	trajectory	starts	out	chaotic,
but	eventually	settles	onto	the
stable	equilibrium.

The	chaotic	wandering	lasts	longer
for	larger	values	of	𝑟.

Once	𝑟 ≈ 24.06 the	chaos	lasts	
forever



Tristability and	Intermittency

For	24.06 < 𝑟 < 24.74 there	is	tristability between	the	strange	attractor
and	the	equilibria	𝐶L	and	𝐶N.

If	a	little	noise	were	added	to	the	system,	the	trajectory	could	follow	the
strange	attractor	for	a	while,	then	move	to	an	equilibrium,	then	back	to	the
strange	attractor.	This	occasional	chaotic	activity	is	called	intermittency.



Behavior	for	Larger	r Values

For	𝑟 > 𝑟C (24.47),	the	system	is	mostly	chaotic.	However,	there	are	narrow
windows	of	periodic	behavior.	For	example,	at	𝑟 = 350,



The	Rössler System

The	Lorenz	system	is	only	one	example	of	a	system	of	nonlinear
ODEs	that	exhibits	chaos.	There	are	many	others.	A	well-known
example	is	the	system	studied	by	Otto	Rössler in	a	1976	paper,	
now	called	the	Rössler system:

𝑑𝑥
𝑑𝑡 = −𝑦 − 𝑧

𝑑𝑦
𝑑𝑡 = 𝑥 + 𝑎𝑦

𝑑𝑧
𝑑𝑡 = 𝑏 + 𝑧(𝑥 − 𝑐)

There	is	only	one	nonlinear	term,	but	that	is	all	that’s	needed	for
chaos	when	𝑎 = 0.21,	𝑏 = 0.2,	and	𝑐 = 5.5.



Rössler Attractor	Video

https://www.youtube.com/watch?v=abr9VhLIsJ4



Lorenz	and	Chaos	Go	To	Hollywood

Jeff	Goldblum,
“chaotician”

Based	on	the	novel	by
Michael	Crichton



Chaos	in	Nonlinear	Difference	
Equations



Chaos	Can	Occur	in	a	Single	Difference	Equation

The	dynamics	of	difference	equations	can	easily	become	complex	if	there	is	
a	nonlinearity.	The	most	well-studied	example	is	the	logistic	equation	for	
population	dynamics,	which	has	a	quadratic	nonlinearity

𝑥xLW = 𝑟𝑥x(1 − 𝑥x)
and	a single	parameter	𝑟 > 0.

We	showed	early	in	the	semester	that	there	are	two	equilibria:	𝑥W∗ = 0 and	
𝑥S∗ =

yNW
y
.	

Case	1:	𝑟 < 1

𝑥W∗ is	stable,	𝑥S∗	is	unstable	(and	negative,	so	non-physical):	the	population	
eventually	becomes	extinct.

Case	2:	1 ≤ 𝑟 < 3
There	is	a	transcritical bifurcation	at	𝑟 = 1,	at	which	point	the	stability	switches.
For	𝑟 < 3 the	equilibrium	𝑥S∗	is	stable.	



Population	Persistence	in	the	Logistic	Equation

Cobweb	diagram	shows	rapid	convergence	to	the	equilibrium	𝑥S∗.

In	terms	of	population	biology,	this	means	the	population	persists,	it	does	not	
go	extinct	as	it	did	with	the	lower	reproduction	rate	𝑟 < 1.



Period	Doubling	or	Flip	Bifurcation
At	reproduction	rate	𝑟 = 3, the	equilibrium	𝑥S∗ loses	stability	at	a	flip or	period	
doubling	bifurcation,	creating	a	stable	2-cycle	that	persists	for	a	range	of	
reproduction	rates	𝑟 > 3.

The	population	size	now	alternates	between	two	values,	year	to	year.	A	stable
equilibrium	population	size	should	not	be	expected.



Cascade	of	Period	Doublings
For	larger	r values,	the	period	goes	through	an	infinite	sequence	of	period
doublings:	

There	is	now	a	four-cycle in	the	population	size.	The	size	returns	to	where	it
started	every	4	iterations	(which	may	mean	every	4	years	in	an	animal	
population).



Cascade	of	Period	Doublings
Let	𝑟x denote	the	value	of	𝑟 where	a	2x	cycle	first	appears.	Then,	from	computer
simulations:	

𝑟W = 3

𝑟S = 3.449

𝑟A = 3.54409

𝑟{ = 3.5644

𝑟| = 3.568759

𝑟~ = 3.568759…

2	cycle

4	cycle

8	cycle

16	cycle

32	cycle

period	approaches	∞

This	is	called	the	u-sequence.



Cascade	of	Period	Doublings
The	successive	bifurcations	as	𝑟 is	increased	come	faster	and	faster.	In	the	limit	
of	large	n, the	distance	between	successive	transitions	shrinks	by	a	constant	
factor

𝛿 = lim
x→~

𝑟x − 𝑟xNW
𝑟xLW − 𝑟x

= 4.669…

The	u-sequence	of	period	doubling	bifurcations	is	a	feature	seen	in	all
unimodel maps,	not	just	the	quadratic	logistic	map.

Mitchell	Feigenbaum
1944-2019

This	was	demonstrated	by	physicist	Mitchell	Feigenbaum in	1978	and	1979.	It	
is	an	example	of	universality,	and	𝛿 is	a	universal	constant,	now	called	the	
Feigenbaum constant.	(Feigenbaum has	a	second	universal	constant
named	after	him.)



Life	After	𝑟~
According	to	biographer	James	Gleich,	mathematician	Robert	May	wrote
the	logistic	equation	in	the	hall	as	a	problem	for	his	graduate	students	
to	tackle,	and	asked	“What	the	Christ	happens	for	𝑟 > 𝑟~? ”

Robert	May
(1936-2020)



Life	After	𝑟~

Robert	May
(1936-2020)



Life	After	𝑟~

For	this	value	of	r
the	orbit	is	non-
periodic.	This	is	
chaos!



A	View	From	the	Orbit	Diagram

The	orbit	diagram	shows	the	asymptotic	values	of	𝑥x	over	a	range	of	r values.	

It	has	become	iconic	in	the	field	of	nonlinear	dynamics.

𝑟~



Self-Similar	Structure

The	orbit	diagram	exhibits	a	self-similar	structure,	which	can	be	seen	by
focusing	in	on	a	very	narrow	interval	of	parameter	space.	This	self-similarity
is	the	hallmark	of	fractals.	

Interval	from	3.4	to	4 Interval	of	3.847	to	3.857



Not	All	is	Chaos

𝑟~

Notice	that	the	complexity	of	the	system	does	not	keep	growing	as	𝑟 is	
increased	past	𝑟~.	There	are	periodic	windows	of	periodic	behavior.	



Period	Three	Implies	Chaos

There	is	a	period-3	window	for	3.8284…	≤ 𝑟 ≤ 3.8415…

Title	of	this	slide	is	the	title
of	a	famous	paper	by	Tien-
Yien Li	and	James	York.



How	Does	This	Period-3	Window	Emerge?

It	we	write	the	logistic	equation	as	𝑥xLW = 𝑓(𝑥x),	then	the	period-3	orbit	
points	are	fixed	points	of	the	third-iterate	map	𝑓A 𝑥 .

There	are	8	real	roots:	2	correspond	to	unstable	fixed	points	of	the	logistic	
equation,	3		correspond	to	the	stable	3-cycle	(filled	circles),	and	3	to	an	
unstable	3-cycle	(open	circles).

𝑟 = 3.835



How	Does	This	Period-3	Window	Emerge?

Now	reduce	𝑟 slightly;	the	hills	move	down	and	the	valleys	move	up.	The
neighboring	fixed	points	of	the	third-iterate	map	coalesce	at	a	tangent	
bifurcation	(similar	to	a	saddle-node	of	periodics bifurcation).	For	an	even	
smaller	value	of	𝑟 we	have:

There	are	2	real	roots,	both	correspond	to	unstable	fixed	points	of	the	logistic	
equation.	The	stable	and	unstable	3-cycles	have	coalesced	and	disappeared.

𝑟 = 3.8



Intermittency	Near	the	Tangent	Bifurcation	Point

Intermittency	occurs	for	𝑟 just	a	bit	smaller	than	the	tangent	bifurcation	
point.	

The	time	course	looks	mostly	like	a	period-3	oscillation,	but	short	chaotic	intervals
occur	at	seemingly	random	times	and	for	random	durations.



The	intermittency	is	Due	to	Ghosts!

There	are	three	narrow	channels	near	where	the	3-cycles	will	appear	if	𝑟 is	
increased	a	bit	more.	These	are	ghosts	of	the	3-cycles.	When	the	trajectory	
enters	any	one	of	these	channels	a	cycle	of	almost	period	3	occurs,	until
the	trajectory	leaves	the	channel.	After	this,	the	orbit	becomes	chaotic,	until	
another	channel	is	entered.



Intermittency	Route	to	Chaos

Intermittency	is	a	generic	behavior	of	systems	that	become	chaotic	at
saddle-node	of	periodics-like	bifurcations.	For	example,	it	is	also	seen	
in	the	Lorenz	equations.		The	progression	from	periodic,	to	intermittent
chaos,	to	full	chaos	is	called	the	intermittency	route	to	chaos.	

Recall	that	the	period-3	window	is	3.8284…	≤ 𝑟 ≤ 3.8415… Intermittency
occurs	for	𝑟 near	(but	below)	3.8284.	What	happens	for	𝑟 near	(but	above)
3.8415?	Here	you	get	a	period-doubling	cascade,	yielding	oscillations	with
period	3×2�,	and	beyond	the	period-doubling	limit	there	is	chaos	again.
Thus,	at	the	right	boundary	of	the	period-3	interval	there	is	a	period-doubling	
route	to	chaos!



The	End


