
Diffusion	on	a	Graph



Diffusion

Due	to	random	motion,	molecules	of	a	high	concentration	will	tend
to	flow	towards	a	region	in	space	where	the	concentration	is	lower.

Examples:	A	dye	injected	into	solution	spreading	through	a	container,
or	heat	spreading	from	a	region	of	high	temperature	to	a	region	of
lower	temperature.



The	Diffusion	Equation

x=0 x=L

Consider	diffusion	in	one	dimension	(x)	over	time	(t)	and	let
u(x,t)	be	the	concentration	of	the	substance	that	is	diffusing.
Then

𝜕𝑢
𝜕𝑡 = 𝐷

𝜕&𝑢
𝜕𝑥&

is	the	diffusion	equation	with	diffusion	coefficient	D.	One	would
also	need	to	supply	initial	values	for	u,	u(x,0)=u0(x),	and	boundary
conditions at	each	boundary.	



The	Diffusion	Equation
To	describe	diffusion	in	a	domain	with	more	than	one	dimension,	the
second	partial	derivative	operator	is	replaced	with	the	Laplacian	operator.
Then	the	diffusion	equation	is,

𝜕𝑢
𝜕𝑡 = 𝐷𝛻&𝑢

where	in	three	dimensions	

𝛻& =
𝜕&

𝜕𝑥& +
𝜕&

𝜕𝑦& +
𝜕&

𝜕𝑧&

Laplacian	operator



Diffusion	on	a	Graph
What	if	the	diffusing	substance	moves	along	edges	of	a	graph	from
node	to	node?	In	this	case,	the	domain	is	discrete,	not	a	continuum.

Let	c	be	the	diffusion	rate	across	the	edge,	then	the	amount	of
substance	that	moves	from	node	j	to	node	i over	a	time	period	dt
is	c 𝑢, − 𝑢. 𝑑𝑡 and	from	node	i to	node	j	is	c 𝑢. − 𝑢, 𝑑𝑡.	So

𝑑𝑢.
𝑑𝑡 = 𝑐 𝑢, − 𝑢.
𝑑𝑢,
𝑑𝑡 = 𝑐(𝑢. − 𝑢,)

ui uj
c



Diffusion	on	a	Graph
Diffusion	to	and	from	node	i must	take	into	consideration	all	nodes	in
the	graph.	The	connectivity	of	the	graph	is	encoded	in	the	adjacency
matrix.	Here	we	assume	that	we	are	working	with	a	simple	graph.	

𝑑𝑢.
𝑑𝑡 = 𝑐𝐴.4 𝑢4 − 𝑢. + 𝑐𝐴.& 𝑢& − 𝑢. + ⋯+ 𝑐𝐴.6(𝑢6 − 𝑢.)

𝑑𝑢.
𝑑𝑡 = 𝑐7𝐴.,(𝑢, − 𝑢.)

6

,84

or



Diffusion	on	a	Graph

𝑑𝑢.
𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐𝑢.7𝐴.,

6

,84

6

,84

Rewriting	the	last	expression,	

Degree	of	node	i,	di

= 𝑐7𝐴.,𝑢, − 𝑐𝑢.𝑑.

6
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We	now	make	use	of	the	Kronecker delta,	𝛿.,

𝛿., = :0, 	if	𝑖 ≠ 𝑗
1, if	𝑖 = 𝑗



Diffusion	on	a	Graph

𝑑𝑢.
𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐7𝛿.,𝑢,𝑑,

6

,84

6

,84

c𝑢.𝑑. = 𝑐 ∑ 𝛿.,𝑢,𝑑,6
,84so

Next	define	the	𝑛×𝑛	degree	matrix 𝐷 =
𝑑4 0 0
0 … 0
0 0 𝑑6

Define	the	n-dimensional	vector 𝑢 =
𝑢4
…
𝑢6

Then c∑ 𝐴.,𝑢, = 𝑐 𝐴𝑢 .
6
,84 inner	product	of	row	i of	A	with	𝑢

Then c∑ 𝛿.,𝑢,𝑑, = 𝑐 𝐷𝑢 .
6
,84 inner	product	of	row	i of	D	with	𝑢



The	Graph	Laplacian

𝑑𝑢.
𝑑𝑡 = 𝑐7𝐴.,𝑢, − 𝑐7𝛿.,𝑢,𝑑,

6

,84

6

,84

so

becomes
𝑑𝑢
𝑑𝑡 = 𝑐𝐴𝑢 − 𝑐𝐷𝑢

= 𝑐 𝐴 − 𝐷 𝑢

We	now	define	the	Graph	Laplacian	matrix,

𝐿 ≡ 𝐷 − 𝐴

The	equation	for	diffusion	on	a	graph	is	then

𝑑𝑢
𝑑𝑡 + 𝑐𝐿𝑢 = 0

or 𝑑𝑢
𝑑𝑡 + 𝑐 𝐷 − 𝐴 𝑢 = 0



The	Graph	Laplacian

What’s	inside	of	L?

𝐿., = J
𝑑.	, if	𝑖 = 𝑗

−1	, if	𝑖 ≠ 𝑗	and	there	is	an	edge
0	, if	𝑖 ≠ 𝑗	and	there	is	no	edge

Is	L	symmetric? Yes,	why?



Solving	the	Graph	Diffusion	Equation

𝑑𝑢
𝑑𝑡 + 𝑐𝐿𝑢 = 0

This	is	a	linear	system	of	ODEs,	so	it	is	solvable.	Also,	since	L is	symmetric	
it	has	real	eigenvalues	and	orthogonal	eigenvectors,	�⃗�., i= 1,⋯ , 𝑛.

Now	write	the	solution	as	a	linear	combination	of	these	eigenvectors,
noting	that	the	coefficients	change	over	time:	𝑢 = ∑ 𝑎.(𝑡)�⃗�.	6

.84 .

Insert	this	into	the	ODE, 7
𝑑𝑎.
𝑑𝑡 �⃗�. +7𝑐𝑎.𝐿�⃗�. = 0

6

.84

6

.84

7
𝑑𝑎.
𝑑𝑡 + 𝑐𝑎.𝜆. �⃗�. = 0

6

.84

where	𝜆. is	an	eigenvalue	of	L.



Solving	the	Graph	Diffusion	Equation

Now	take	the	inner	product	of	both	sides	of	the	last	equation	with
each	of	the	eigenvectors,	recalling	that	they	form	an	orthogonal	set.
This	leads	to	n differential	equations	for	the	coefficients	𝑎.(𝑡).

YZ[
Y\
+ 𝑐𝜆.𝑎. = 0 ,	i=1,…,n

These	ODEs	are	uncoupled	and	linear,	so	they	have	simple	exponential
solutions:

𝑎. 𝑡 = 𝑎.(0)𝑒^_`[\

where	𝑎.(0) is	the	initial	value	of	the	coefficient.

Since	each	coefficient	has	such	a	solution,	then	by	the	superposition
principle,	a	linear	combination	of	these	is	also	a	solution.	Thus,	the	
general	solution	to	the	graph	diffusion	differential	equation	is

𝑢 𝑡 =7𝑎.(0)𝑒^_`[\�⃗�.

6
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Spectral	Solution



Solving	the	Graph	Diffusion	Equation

How	do	we	find	the	initial	values	of	the	coefficients?

Use	the	initial	distribution	of	u among	the	nodes.

𝑢 0 =7𝑎.(0)�⃗�.	
6
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Now	take	the	inner	product	of	both	sides	with	an	eigenvector

𝑢 0 a �⃗�, = 𝑎,(0) �⃗�,
&

𝑎, 0 =
𝑢(0) a �⃗�,
�⃗�,

&



Spectral	Properties	of	the	Graph	Laplacian

By	spectral	properties,	we	mean	properties	of	the	eigenvalues	and	eigenvectors.	

Since	L is	symmetric,	its	eigenvalues	are	real	and	its	eigenvectors	are	orthogonal

Is	L singular	or	non-singular?

Look	at	any	row	i. The	diagonal	element	is	the	degree	of	the	node,	𝑑..	All	the	
other	elements	are	either	0	or,	for	each	edge,	-1.		There	are	exactly	𝑑. of	these,
so	if	you	sum	across	any	row	of	L you	get	𝑑. − 𝑑. = 0. This	is	true	for	any	of	the
rows.	So	the	sum	of	all	columns	of	the	matrix	is	0.	Therefore,	L is	singular.	That
is,	it	has	at	least	one	zero	eigenvalue.	Call	it	𝜆4 = 0.



Spectral	Properties	of	the	Graph	Laplacian

What	is	the	eigenvector	associated	with	the	zero	eigenvalue?	That	is,	the
vector	�⃗�4 such	that	𝐿�⃗�4 = 0?

It	must	be	a	vector	of	1s,	1.	Why?

Because,	𝐿1 is	the	sum	of	the	columns	of	L,	which	we	know	equals	0.

Does	L have	any	negative	eigenvalues?

So	L has	non-negative	eigenvalues,	which	is	called	positive	semidefinite.	

Suppose	that	𝜆& < 0.	Then	the	term	in	the	spectral	solution

𝑎&(0)𝑒^_`e\�⃗�& → ∞

which	we	know	can’t	happen	(think	about	spreading	die,	does	its	concentration
go	to	infinity	anywhere	in	the	domain?)

as 𝑡 → ∞



Spectral	Properties	of	the	Graph	Laplacian
Suppose	that	the	graph	has	two	components.	How	is	that	reflected	in	the	
eigenvalues?

Label	the	nodes	so	that	the	first	𝑛4correspond	to	one	component	and	the
last	𝑛& = 𝑛 − 𝑛4 correspond	to	the	other	component.	This	results	in	a
block	diagonal	graph	Laplacian	matrix

L =

L1

L20

0

n1

n2



Spectral	Properties	of	the	Graph	Laplacian

L =

L1

L20

0

n1

n2

Define �⃗�4 = (1,1,1,⋯ , 0,0,0,0⋯)

n1

�⃗�& = (0,0,0,⋯ , 1,1,1,1⋯)

n2

𝐿�⃗�& = 𝐿&1 = 0Then 𝐿�⃗�4 = 𝐿41 = 0 and

So	�⃗�4and	�⃗�& are	both	eigenvectors	of	L with	0	eigenvalues,	and	L has	two	0	eigenvalues.



Spectral	Properties	of	the	Graph	Laplacian

In	general,	the	number	of	0	eigenvalues	of	the	graph	Laplacian	is
equal	to	the	number	of	components	of	the	graph.

One	can	order	the	eigenvalues	of	L from	smallest	to	largest.	Then

𝜆4 = 0

If 𝜆& ≠ 0 then	the	graph	is	connected

If 𝜆& = 0 then	the	graph	is	disconnected

So	𝜆&	is	called	the	algebraic	connectivity	of	the	graph.



Asymptotic	Solution

𝑢 𝑡 =7𝑎.(0)𝑒^_`[\�⃗�.

6
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Recall	that	the	spectral	solution	to	the	graph	diffusion	equation	is

Suppose	that	the	graph	is	connected.	Then	𝜆4 = 0 and	all	other
eigenvalues	are	positive.	There	are	n terms	in	the	solution	above.
What	happens	to	these	terms	as	𝑡 → ∞?

All	approach	0,except	for	the	first	term,	which	is	independent	of	time.
So	the	asymptotic	solution	is	just	the	first	term	of	the	spectral	solution,

𝑢h = 𝑎4 0 �⃗�4



Asymptotic	Solution

𝑢h = 𝑎4 0 �⃗�4

But 𝑎4 0 �⃗�4 =
𝑢(0) a �⃗�4
�⃗�4 & 1 = 	

𝑢4 0 +⋯+ 𝑢6(0)
𝑛 1

So 𝑢h =
𝑢4 0 +⋯+ 𝑢6(0)

𝑛 1

How	can	we	interpret	this	physically?

In	the	long	term,	each	node	in	the	connected	graph	gets	the	same	share
of	the	dye	(or	whatever	is	diffusing),	which	is	equal	to	the	total	amount
initially	present	divided	by	the	number	of	nodes.



Asymptotic	Solution	
This	can	also	be	derived	directly	from	the	diffusion	equation

𝑑𝑢
𝑑𝑡 + 𝑐𝐿𝑢 = 0

Set	time	derivative	to	0,

𝐿𝑢h = 0

So	the	equilibrium	vector	is	an	eigenvector	of	the	graph	Laplacian
corresponding	to	the	0	eigenvalue,	which	is	what	we	just	saw	using
the	different	approach.	The	length	of	the	equilibrium	vector	is	just
the	sum	of	the	initial	values	of	𝑢:	

𝑢h =∑ 𝑢.(0)6
.84



Asymptotic	Solution
We	can	rewrite	this	equilibrium	equation	by	deconstructing	the	graph
Laplacian

𝐿𝑢h = 0

or

(D-A)𝑢h = 0

D𝑢h = 𝐴𝑢h

𝑢h = 𝐷^4𝐴𝑢h

Hold	on	now,	is	D invertible? Yes,	as	long	as	the	graph	is	connected



Asymptotic	Solution

Since 𝑢h = 𝐷^4𝐴𝑢h

𝑢h,. =
∑ 𝐴.,𝑢h,,6
,84

𝑑.

where	we	note	that	𝐴.. = 0	when	there	are	no	self-edges.	If
This	is	the	same	at	each	node,	as	would	be	the	case	for	diffusion
in	a	uniform	medium,	then	

7𝐴.,𝑢h,, = 𝑑.𝑢h,.

6

,84

and	the	equation	*	is	satisfied.		

*

In	the	end,	all	nodes	share	equal	amounts	of	the	substance	that
was	initially	introduced.



Heterogeneous	Diffusion

So	far	we	have	thought	of	the	graph	as	an	unweighted	graph.	That	is,
diffusion	between	any	pair	of	nodes	has	the	same	rate,	c.	This	is	called
homogeneous	diffusion.	More	generally,	each	edge	can	have	its	own
diffusion	rate,	which	is	called	heterogeneous	diffusion.	So	now	the	
adjacency	matrix	has	weights	as	its	elements	(or	0s),	and	

𝐿., = J
𝑠.	, if	𝑖 = 𝑗

−𝑐.,	, if	𝑖 ≠ 𝑗	and	there	is	an	edge
0	, if	𝑖 ≠ 𝑗	and	there	is	no	edge

where	degree	si is	the	sum	of	the	weighted	edges	(i.e.,	the	strength	of	
the	node)	at	node	i and 𝑐., is	the	weight	connecting	nodes	i and	j.

𝑢h,. =
∑ 𝐶.,𝑢h,,6
,84

𝑠.
Now,	

This	equation	is	satisfied	if	all	nodes	end	up	with	equal
concentrations:		𝑢h,. = 𝑢h,, for	each	𝑖, 𝑗.	That	is,	once	again,	
at	equilibrium	the	nodes	equally	divide	the	initial	amount	of	
substance.		



The	Filter	Matrix
Define	a	new	matrix,	W,	which	I’ll	call	a	filter	matrix

𝑊 ≡ 𝐷^4𝐴

𝑢h = 𝑊𝑢h

Then

How	can	we	interpret	this?	One	way	is	to	think	about	the	
following	first-order linear	recursion	or difference	equation:

𝑢lm4 = 𝑊𝑢l

starting	from	the	initial	vector	𝑢n.What	happens	if	you	iterate	forever?

Then	ultimately	if	the	system	converges	(and	it	will),	the	k+1	iterate	will	
be	the	same	as	the	k	iterate.	This	gives	the	equilibrium	equation	above.	
The	equilibrium	vector	𝑢h is	therefore	the	fixed	point	of	the	recursion	
with	the	filter	matrix.	



Image	Processing



Pixelated	Image	as	a	Network

Each	point	on	the	grid	has	a	grey	level:	0=white,	1=black,	with
shades	of	grey	corresponding	to	intermediate	values.	These	grid
points	are	the	nodes of	a	network	and	their	grey	level	is	the	value
of	u at	that	node.



Pixelated	Image	as	a	Network

What	are	the	edges?	

Most	generally,	connect	each	node	pair	with	an	edge,	but	make	the	
edges	weighted	(𝑐.,)	by	the	affinity of	each	of	the	connected	nodes.	
Here,	affinity	means	how	similar	they	are.		

Similar	could	mean	location	(nearest	neighbors	get	highest	affinity).	Or	it	
could	mean	the	grey	level	of	the	pixels	(similar	u values	of	nodes).	If	it	is	
based	on	location,	then	the	edge	weights	are	fixed.	If	based	on	grey	level,	
edge	weights	are	functions	of	the	u values.



Modifying	an	Image	With	the	Filter	Matrix

Let	𝑢n be	the	grey	level	values	of	the	original	image.	Image	processing
multiplies	that	vector	by	the	filter	matrix	to	get	a	product	vector,	
𝑢4 = 𝑊𝑢n.	It	typically	does	this	more	than	once,	applying	the	recursion
relation	we	saw	earlier,	𝑢lm4 = 𝑊𝑢l.	

The	effect	this	has	on	the	image	depends	on	W.	If	the	affinities	are
chosen	to	be	neighbors	in	physical	space,	then	there	is	a	static	network	and
the	effect	of	the	filtering	will	be	to	average	out	differences	among	neighbors.	
The	image	becomes	smoother.		



Modifying	an	Image	With	the	Filter	Matrix

If	the	affinities	are	chosen	according	to	similarity	in	grey	level,	then	
applying	the	filter	will	have	the	effect	of	making	similar	pixels	more
similar,	which	tends	to	sharpen	the	image.	In	this	case,	the	weights	𝑐.,
and	therefore	the	elements	of	W	are	updated	with	each	iteration	of
the	recursion	formula;	there	is	a	dynamic	network.	

In	practice,	combinations	of	affinity	based	on	location	and	based	on
grey	levels	are	used,	and	iteration	stops	when	some	measure	of	image
goodness	has	been	reached.



For	a	Great	Video	on	Image	Processing

The	following	link	has	an	hour-long	lecture	by	a	researcher	from	Google
on	how	the	graph	Laplacian	is	used	in	image	processing:

https://www.youtube.com/watch?v=_ItmFYCr7ag



The	End


