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At the beginning of the course we discussed the discrete logistic

equation for population dynamics. This equation has also been used to

study complex dynamics such as chaos. We now turn to the continuous

logistic equation:
dN

dt′
= rN [1− N

K
] (1)

where r and K are the growth rate and carrying capacity and N is the

population density. The independent time variable is t′. Equation 1 can

be rewritten as
dN

dt′
= R(N)N (2)

where R(N) = r(1 − N
K ) is a density-dependent growth rate and is a

decreasing function of N . There are two steady states, N∞,1 = 0 and

N∞,2 = K, but only the latter is stable (when r > 0). Thus, the popula-

tion will tend to it’s carrying capacity over time.

The logisitc equation assumes that the organism’s birth rate depends

instantaneously on changes in population size. However, in many cases

there should be a delay. For example, many organisms store nutrients, so

won’t notice immediately if the population grows too large for the available

resourses. In 1948 G. E. Hutchinson modified the logistic equation to

incorporate a delay into the growth rate, so R(N) becomes R(N(t′− τ )):

dN

dt′
= rN [1− N(t′ − τ )

K
] (3)
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where τ is the delay. We can write this in dimensionless form by intro-

ducing the following changes of variable: y ≡ N
K and t ≡ t′

τ . A delay of τ

is simply a delay of 1 in the new time variable. Also,

dN

dt′
=
dN

dt

dt

dt′
=

1

τ

dN

dt
. (4)

So in the dimensionless form,

dy

dt
= rτy[1− y(t− 1)] . (5)

Define α ≡ rτ , so that the time delay is absorbed into the α parameter.

Then Eq. 5 becomes

dy

dt
= αy[1− y(t− 1)] . (6)

Now denote y(t− 1) as yτ ; it is a delayed variable. Then we finally arrive

at the dimensionless delay-logistic equation,

dy

dt
= αy[1− yτ ] . (7)

Note that to specify initial conditions, one must specify the y value over

the time interval [0, 1] (or [0, τ ] for the dimensional form of the equation).

Often this is done by picking y to be the same value over this entire

interval, so y = y0 for all t ∈ [0, 1]. In the examples below I use y = 2

for t ∈ [0, 1]. Equation 7 has a single parameter, α, which is convenient

for analysis. For the case α = 1 the output is a damped oscillation that

converges to 1. To find equilibria analytically we proceed as usual, but
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Figure 1: Solution to delay-logistic equation with α = 1.

also set yτ = y since at equilibrium y does not change in time, so the

delayed value of y is the same as the non-delayed value. From Eq. 7, the

equilibria satisfy

0 = αy∞(1− y∞) (8)

or y∞ = 0, 1.

When α is increased to α = 2 the damped oscillation becomes a sus-

tained oscillation, with period of about 5 (Fig. 2). This indicates that a

Hopf bifurcation has occurred for some value of α between 1 and 2.

We see from this example that a single delay-differential equation (DDE)
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Figure 2: Solution to delayed-logistic equation with α = 2.

is capable of producing periodic motion, in contrast to a single ordinary

differential equation. This is because the single DDE is not 1-dimensional,

but is actually infinite dimensional. This should be expected, since

one must specify the value of y over an entire interval (an infinite number

of points) to initialize the DDE.

So we see that by adding a delay one can induce oscillations. In this ex-

ample, the delay was added into the term that provides negative feedback

(the quadratic term), which was intentional; delayed negative feedback

is well known to give rise to oscillations. As this example demonstrates,
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population models with a single species can give rise to oscillations, as

long as there is delayed negative feedback.
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Stability of the Linear Delay-Differential Equation

Local stability of DDEs is more challenging than for ordinary DEs, due

to the infinite dimensionality of the system. As an example, we consider

the simple linear delay-differential equation in dimensionless form

dy

dt
= ayτ (9)

where yτ ≡ y(t− 1). Note that the only equilibrium solution is y∞ = 0.

Since Eq. 9 is linear, we try the exponential solution y = Ceλt, so that

dy

dt
= Cλeλt (10)

and also

ayτ = aCeλ(t−1) = aCeλte−λ (11)

so together,

λ− ae−λ = 0 (12)

is the characteristic equation. The solutions of this equation are

called the eigenvalues, as in the case of a system of linear ordinary differ-

ential equations. For ODEs the equation is a polynomial and the funda-

mental theorem of algebra tells us how many roots (eigenvalues) to expect.

For the linear DDE the characteristic equation is transcendental, so there

is no theorem about number of roots (which could be countably infinite).
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For our example, we will consider real and complex solutions separately.

First, suppose that λ is real. We can plot z = λ and z = ae−λ and

look for intersections.

λ

z

Figure 3: For real λ and a > 0.

For a > 0 there is a single intersection at a positive λ. Thus, the

solution y = ceλt increases exponentially to infinity as t → ∞, and the

equilibrium y∞ = 0 is unstable.

For a < 0 there may be 0, 1, or 2 intersections. There is a single

intersection when the curves are tangent. At this point of tangency the

curves have the same slope, and since the line has slope of 1, this means

that at the point of tangency

d

dλ
ae−λ = 1 (13)

or

−ae−λ = 1 (14)
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Figure 4: For real λ and three values of a < 0. There is a point of tangency for a = ac (green) and

no real roots for a < ac (cyan).

so that

a = −eλ . (15)

Since this point is on the curve z = ae−λ, if we replace a, then z = −1.

Since the intersection is on the line z = λ, λ = −1 also. Therefore, the

tangency occurs (and there is a single intersection) when ac = −e−1.

For ac < a < 0 there are two real negative eigenvalues. For a = ac =

−e−1 there is a single negative eigenvalue (λ = −1). For a < ac there are

no real eigenvalues.

By superposition, the solution to the linear DDE is the sum of exponen-

tial solutions. So, if a ∈ [ac, 0] the real eigenvalues are negative and so the

associated exponential solutions decay to 0 over time. If a < ac there are

no exponentially decaying or growing components to the solution. What

about the components associated with complex eigenvalues?
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Suppose that λ is complex. Then substitute λ = λr + ıλi into

the characteristic equation (Eq. 12). Then

λr + ıλi = a exp(−λr − ıλi) (16)

= a exp(−λr) exp(−ıλi) (17)

= a exp(−λr)[cos(−λi) + ı sin(−λi)] (18)

= a exp(−λr) cos(λi)− ıa exp(−λr) sin(λi) (19)

so

λr = a exp(−λr) cos(λi) (20)

and

λi = −a exp(−λr) sin(λi) (21)

and therefore
λr
λi

= − cot(λi) . (22)

Using these last two equations, we get parametric equations for λr and a

with λi as a parameter:

λr = −λi cot(λi) (23)

a = − λi
exp(λi cot(λi)) sinλi

. (24)

Due to the periodicity of the trigonometric functions, many curves are

traced out as λi is varied from −∞ to ∞, producing an infinite number

of curves.
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Figure 5: For complex λ there are an infinite number of solution curves (green). Also included is

the solution curve for real λ (red).

The general solution is y(t; a) =
∑
cne

λnt, where summation is over all

values of λn for the given parameter a, and y∞ = 0 is a stable steady

state for values of a in which all eigenvalues have negative real parts.

That is, for all values of a between the dashed line and a = 0, a ∈ (ac2, 0)

in the figure. What is the value ac2? It is the value in which λr = 0 and

λi 6= 0 (the eigenvalue is complex). From Eq. 20, if λr = 0, then

0 = a cos(λi) (25)

or

λi = ±π
2

+ kπ , k ∈ Z (26)

and using Eq. 21,

λi = −a sin(λi) (27)
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or

λi = ∓a (28)

and thus

a = ∓λi (29)

Equations 26 and 29 give the values of a where each of an infinite num-

ber of complex eigenvalues cross through λr = 0. We don’t care about

positive a values, since we know that in this case the real eigenvalue is

positive, and hence y∞ = 0 is unstable. For the negative values of a, the

first crossing is at λi = π
2 and from Eq. 29, ac2 = −π

2 . Therefore, y∞ = 0

is stable for a ∈ (−π
2 , 0).
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Linear Stability of the Delay-Logistic Equation

We now return to the delay-logistic equation,

dy

dt
= αy[1− yτ ] . (30)

In addition to the trivial steady state, this has a saturated steady state

at y∞ = 1. We will investigate the linear stability of this. To do this,

introduce a small perturbation u from y∞ = 1 and see if the phase point

returns to the steady state. That is, let y = u+ 1, or u = y−1 and insert

into the DDE,

du

dt
= α(u + 1)(1− (uτ + 1)) (31)

= −α(u + 1)uτ . (32)

For small perturbations, u + 1 ≈ 1, so

du

dt
≈ −αuτ (33)

which is the linear DDE we just analyzed, with a = −α. From this

analysis, we know that the trivial solution is stable for −π/2 < a < 0, so

u∞ = 0 is stable for 0 < α < π/2. This means that a small perturbation

away from y∞ = 1 decays to 0 over time, and thus y∞ = 1 is a stable

steady state of the delay-logistic equation (Eq. 30) for 0 < α < π/2.

At α = π/2 this steady state loses stability when a complex eigenvalue

crosses through the imaginary axis (the real part goes from negative to
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positive). Thus, there is a Hopf bifurcation at α = π/2. For α > π/2

the system has a stable periodic solution.
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Figure 6: Solution to delay-logistic equation with α = 2.
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Periodic Breathing

Periodic breathing, also called Cheyne-Stokes breathing, is character-

ized by a few deep breaths followed by a few shallow breaths. In some

cases, the deep breaths are followed by no breathing, a condition called

sleep apnea. Periodic breathing often occurs in high altitudes during sleep,

and is a symptom of altitude sickness. It also sometimes occurs in babies.

During an apnea, blood oxygen levels and the heart pumping rate drop,

causing the sleeper to wake up. Of course, this results in a bad night

of sleep. In some extreme cases, death occurs during sleep. The leading

hypothesis for periodic breathing is that it is due to an instability in the

chemical control system for respiration. This hypothesis has gained sup-

port since it was first published, partly due to mathematical models (the

first of which was published in 1940).

More recently (2000), a simple delay-differential equation model was

published describing the dynamics of CO2 concentration in the lungs (p).

The equation is

VL
dp

dt
= P − V − T (34)

where P is CO2 production, V is brain-controlled ventilation, and T is

the transfer from lung to stores via the blood, and VL is the lung volume.

CO2 production is a result of metabolism and is assumed to occur at

a constant rate M . Ventilation is controlled by the brain stem, which
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monitors CO2 levels in the blood. There is a delay between the measure-

ment of the CO2 level and the time at which ventilation takes place. The

authors modeled this as pV (p(t− τ )), where V is a ventilation function.

The transfer to stores does not involve the brain, so it occurs without a

delay and is described by the function T (p). As we shall see, the details

of the ventilation and transfer functions are not needed to understand the

instability hypothesis for periodic breathing. We now have

VL
dp

dt
= M − pV (pτ )− T (p) . (35)

We assume that there is a steady state solution, p∗, that represents

normal ventilation. Then we consider a small perturbation from p∗, u =

p− p∗, and see if the system returns to rest:

VL
du

dt
= M − (u + p∗)V (uτ + p∗)− T (u + p∗) . (36)

Now do a Taylor approximation, treating u and uτ as separate variables,

f (u, uτ ) ≈ f (0, 0) +
∂f

∂u
(0, 0)u +

∂f

∂uτ
(0, 0)uτ (37)

where

f (u, uτ ) = M − (u + p∗)V (uτ + p∗)− T (u + p∗) (38)
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and f (0, 0) = 0 since (0, 0) is the steady state.

∂f

∂u
= −V (uτ + p∗)− T ′(u + p∗) (39)

∂f

∂u
(0, 0) = −V (p∗)− T ′(p∗) (40)

∂f

∂uτ
(0, 0) = −p∗V ′(p∗) (41)

so

VL
du

dt
≈ −[V (p∗) + T ′(p∗)]u− p∗V ′(p∗)uτ . (42)

This tells us that all we need to solve the linearized DDE is V (p∗), T ′(p∗),

and V ′(p∗) (we don’t need to know the complete V and T functions).

Fortunately, these things are measurable, and have been measured. V (p∗)

is the mean ventilation; T ′(p∗) = βQ where β is the solubility of CO2 in

blood and Q is the cardiac output; and V ′(p∗) is the chemoreflex gain. To

solve, insert u = ceλt into Eq. 42,

VLcλe
λt = −c[V (p∗) + T ′(p∗)]eλt − ceλte−λτp∗V ′(p∗) (43)

or

VLλ = −[V (p∗) + T ′(p∗)]− e−λτp∗V ′(p∗) (44)

and thus

λ +
V (p∗) + T ′(p∗)

VL
+
e−λτp∗V ′(p∗)

VL
= 0 (45)

and so the characteristic equation is

λτ + x + ye−λτ = 0 (46)
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with the τ introduced to make the algebra easier later. Here

x ≡ [V (p∗) + T ′(p∗)]τ

VL
(47)

y ≡ p∗V ′(p∗)τ

VL
. (48)

Periodic breathing, by hypothesis, begins when the steady state CO2

concentration in the lungs loses stability via Hopf bifurcation. So we look

for solutions to the characteristic equation of the form λ = iω:

iωτ + x + ye−iωτ = 0 (49)

or

iωτ + x + y[cos(ωτ )− i sin(ωτ )] = 0 . (50)

For the real part,

x + y cos(ωτ ) = 0 (51)

and for the imaginary part,

ωτ − y sin(ωτ ) = 0 . (52)

From Eq. 52,

y =
ωτ

sin(ωτ )
(53)

and inserting this into Eq. 51,

x = −ωτ cot(ωτ ) . (54)
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These latter two equations are parametric equations for x and y, with ωτ

as the parameter. We can plot the curve described by the equations over

some range of ωτ . Here we use 0.5π < ωτ < 0.9π.

x

y

9

9

periodic

stationary

Hopf

Figure 7: Periodic breathing occurs for (x, y) above the Hopf curve.

This curve is almost linear. One can then rewrite Eq. 42 in terms of x

and y, yielding
du

dt
= −x

τ
u− y

τ
uτ . (55)

If (x, y) values below the Hopf curve are inserted into Eq. 55 and if the

equation is solved numerically, we see that below the Hopf curve the equi-

librium solution u = 0 is stable while above the curve it is unstable and

there are stable oscillations. That is, periodic breathing occurs for (x, y)

above the Hopf curve (Fig. 7).
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Figure 8: Clinical data showing patients exhibiting periodic breathing (filled) and those exhibiting

normal breathing (open). From Francis et al., Circulation, 102:2214-2221, 2000.

Figure 8 shows clinical data from patients exhibiting periodic breathing

(filled squares) and the observed x and y values for these patients. It also

shows individuals not exhibiting periodic breathing (open symbols). As

predicted from the model, patients showing periodic breathing have x and

y values that place them above the Hopf curves, where oscillations are

expected. The cycle time for these patients is 1.2± 0.2 min. We can use

this oscillation period along with the Hopf bifurcation theorem to deduce

a value for the delay τ that must exist for our model to reproduce the

experimental data. Let T denote the oscillation period, and then by the



21

Hopf bifurcation theorem,

T =
2π

ω
(56)

so
T

τ
=

2π

ωτ
(57)

so that

τ =
ωτ

2π
T (58)

=
1.2

2π
(ωτ ) . (59)

Using the range 0.5π < ωτ < 0.9π that we used to make Fig. 7, the range

of delays that will make the model range of periods match those from the

clinical data is 0.3 < τ < 0.5 (min), or 18 < τ < 30 (sec). That is,

the model predicts that when periodic breathing occurs there is a delay

of somewhere between 18 and 30 seconds between the time at which the

brain stem measures CO2 level in the blood and the time that ventilation

occurs.
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Ultradian Rhythms in Glucocorticoid Secretion

Another biological example of oscillations induced by time delays is in the

endocrine system. Glucocorticoids are hormones released by the adrenal

gland during periods of stress. The glucocorticoid released in humans is

cortisol, while that released in rats and mice (where virtually all studies

are done) is corticosterone. These are key stress hormones that act on

the cardiovascular, cognitive, metabolic, and immunological state of the

animal. Under normal conditions, there is a daily or circadian rhythm

in the release of glucocorticoids (which we’ll call “CORT”), with high

release during waking hours and low release during sleep. Superimposed

on this slow rhythm is a faster rhythm with period of about 1 hour; this

faster type of rhythm is called an ultradian rhythm. The amplitude of

the ultradian rhythm is modulated by the circadian rhythm (Fig. 9). It

has been demonstrated that the response of the animal to a stressor varies

with the phase of the ultradian rhythm at which the stressor occurs.

The structure of the “stress axis” is shown in Fig. 10. The hypothalamus

is the region of the brain that regulates hormone secretion from the vari-

ous endocrine glands. It does this by acting on the pituitary gland, which

contains five types of hormone-secreting cells, including pituitary corti-

cotrophs. A neurohormone called corticotropin-releasing hormone (CRH)

is released from the paraventricular nucleus (PVN) of the hypothalamus
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Figure 9: Measurements of blood corticosterone in two male rats. The bar indicates the dark phase.

From Walker et al., 2010.

and it stimulates the corticotrophs to secrete adrenocorticotropic hormone

(ACTH). This travels through the blood to the adrenal gland, where it

acts on cells of the adrenal cortex to secrete CORT into the blood. This

hormone feeds back onto neurons of the PVN and on the corticotrophs to

inhibit them. However, the CORT is not stored in the adrenal cells, but

must be synthesized in response to ACTH. This introduces a time delay

between the release of ACTH and the release of CORT.

The circadian oscillations in CORT are due to input from the body’s

central clock, a region of the brain called the suprachiasmatic nucleus

(SCN). This acts on neurons of the PVN so that the release of CRH

undergoes a daily rhythm, causing daily rhythms in ACTH and CORT.

(The central nervous system (CNS) also acts on the hypothalamus
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Figure 10: Illustration of the key components of the stress axis.

to regulate hormone secretion.) It was originally thought that ultradian

rhythms in CORT were also due to ultradian rhythms in CRH. However,

the lab of Stafford Lightman has shown that ultradian rhythms in CORT

can be produced when CRH levels are relatively constant. How can this

happen? To answer this, he collaborated with mathematician John Terry

and his student Jamie Walker to build and ultimately test a mathematical

model.

This model includes a variable for the ACTH concentration (a), glu-

cocorticoid receptor availability in the corticotrophs (r), and CORT (c).
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The equations are:

da

dt
=

p1

1 + p2rc
− p3a (60)

dr

dt
=

(cr)2

p4 + (cr)2
+ p5 − p6r (61)

dc

dt
= aτ − c (62)

where the pj are parameters and aτ = a(t − τ ). (The equations are

in non-dimensional form.) The first equation reflects the inhibition of

ACTH release when CORT binds to a receptor in the corticotrophs. The

second equation reflects the increase in CORT receptor transcription and

membrane insertion that occurs in response to CORT. The last equation

desribes the delayed synthesis of CORT.

Simulations with this model were done with XPPAUT to produce Fig. 11.

Initially the CRH input is low (parameter p1 is small). In this case there

are no oscillations. At the closed arrow the CRH concentration is increased

and oscillations begin. In these oscillations the ACTH concentration (red)

lead the CORT concentration (black), as has been observed experimen-

tally. The oscillations are terminated, however, when the time delay τ is

too small (open arrow). This demonstrates that oscillations only occur

for appropriate values of the input parameter (CRH) and the time delay.

It is a common feature with models involving explicit time delays that

oscillations only occur when the time delay is sufficiently large.
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Figure 11: Model simulation showing effects of CRH and the time delay on CORT and ACTH

dynamics.

Another property of systems with an explicit time delay is that when

oscillations occur their period depends critically on the value of the de-

lay τ . Larger time delays give larger periods, but the oscillation periods

are significantly greater than the time delay. Figure 12 is a 2-parameter

bifurcation diagram that illustrates the region of parameter space where

oscillations occur, and the periods of the oscillations. Oscillations only

occur when the time delay is sufficiently large, regardless of the amount

of CRH drive. Thus, the model predicts that the mechanism for ultradian
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CORT oscillations depends critically on the fact that CORT must be syn-

thesized (not stored) in the adrenal cortex following ACTH stimulation.

Figure 12: Two-parameter bifurcation diagram showing the region in parameter space where ultra-

dian oscillations occur. The parameters are CRH drive (p1) and adrenal delay (τ). From Walker et

al., 2010.

The dependence of oscillation period on the time delay is the focus of

Fig. 13. Note that the interval of CRH drive (p1) over which oscillations

are produced increases when the time delay is increased. In addition, the

period increases with the time delay, and is always much greater than the

time delay.
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Figure 13: Period of the ultradian oscillation for several values of the time delay τ = Tlag. From

Walker et al., 2010.

Circadian Oscillations

The timing of behaviors of plants and animals is determined largely by

cycles of night and day, giving an approximate 24-hour periodicity in the

environment. Oscillations with a 24-hour period are called circadian

oscillations. Circadian oscillations in hormones have evolved to adapt

to the 24-hour rhythmicity of the environment. These oscillations are

endogenous to the body, since they persist in an artificial environment of

contstant dark or constant light. This can be demonstrated behaviorally

by wheel running, which hamsters do when they are awake and when

they have a wheel to run on (Fig. 14). The figure also shows actograms

from heterozygous and homozygous tau mutant hamsters, which exhibit

activity periods of 22 hrs and 20 hrs, respectively. The discovery of this

mutation, by Martin Ralph and Michael Menaker in 1988, demonstrated

that a mutation on a single allele can have a very large influence on the
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circadian period. It was eventually determined to be on the gene for casein

kinase 1 epsilon.

Figure 14: Actogram of wheel running by hamsters in constant darkness. The period of activity

in this free-running environment is 24.2 hours (top). The middle actogram shows wheel running

in a heterzygous tau mutant, while the lower actogram shows that of a homozygous tau mutant

hamster. Both mutants exhibit faster rhythms in activity. From Liu et al., 1997.

As mentioned in the last section, circadian oscillations in the body

are driven by the suprachiasmatic nucleus (SCN), a small nucleus in the

hypothalamus (Fig. 15). This is one of the few brain regions that receives

direct input from the retina, via the retino-hypothalamic tract of neural

fibers. This provides the input needed to entrain the SCN oscillator to the

light/dark cycle.
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Figure 15: Nuclei of the hypothalamus.

How do the neurons in the SCN produce a daily rhythm? Is it a product

of a neural network within the SCN? To check this one can take the SCN

from a hamster and dissociate the neurons in culture, so that they are

not interconnected. Figure 16 demonstrates the firing rate of a single

dissociated SCN neuron over time. A circadian rhythm in firing rate is

obvious, demonstrating that network interations among SNC neurons are

not necessary for circadian rhythm generation.

How do the ion channels in the membrane of the SCN neuron produce a

circadian rhythm? The most obvious mechanism is through oscillations in

gene transcription, which produces one or more gene product that varies
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Figure 16: Firing frequency recorded from dissociated hamster SCN neurons over time. The lower

two recordings are from heterozygous and homozygous tau mutant hamster. The homozygous

mutant exhibits a shorter period. Liu et al., 1997.

ion channel activity on a daily basis. Figure 17 shows one such periodic

gene called the period gene (per) whose product is the period protein

(PER). These mRNA measurments come from mice sacrificed at different

time points over a number of days. During the first day the mice are

exposed to a 12/12 light/dark cycle, while they are in constant darkness

after that (the dashed bar represents a period of time that would have

corresponded to a light period, were the mouse not in constant darkness).
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There is a clear rhythm in the abundance of per mRNA, with high levels

during the light phase and low levels during the dark phase.

It is interesting that similar rhythms in per mRNA are observed in pe-

ripheral tissue such as the liver, kidney, and pancreas (Fig. 18). However,

this rhythm dies out over time in peripheral tissue, while it persists in

SCN explants. It is thought that periodic input from the SCN is needed

to synchronize the oscillations in peripheral cells.

Circadian Oscillations in Period Gene
Expression, from Mouse Brain SCN

Animals kept in 12/12 dark/light cycle before constant darkness

Figure 17: Daily rhythm in expression of the period gene in the SCN that continues in constant

darkness. Measurement made using in situ hybridization. From Shigeyoshi et al., 1997.

What is the mechanism for the circadian rhythm in per gene expression?
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Figure 18: Oscillations in per gene expression in peripheral tissue. Measurement made using a

per-driven luciferase reporter. From Repport and Weaver (2002).

This has been the focus of a great deal of research in molecular biology for

the past couple of decades, and now a great deal is known. The essence

of the mechanism is given by a simple DDE model published by Scheper

et al. (1999). There is a single variable for per mRNA concentration

(m) and one for “effective” PER protein (p), which is the protein after

phosphorylation. It is known that phosphorylated PER can enter the

cell’s nucleus and act as a transcriptional repressor of it’s own gene! That
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is, m is inhibited by p. Thus, the m DDE is

dm

dt
=

rm
1 + p2

− qmm

where rm is mRNA production rate constant and qm is an mRNA degra-

dation constant. The effective protein p is produced by m (via mRNA

translation), followed by several phosphorlyation steps. Finally, for p to

repress m it must translocate across the nuclear membrane. This all takes

time, so the production of p from m is delayed. The p DDE is

dp

dt
= rpm

3
τ − qpp

where rp is the effective protein production rate constant, qp is the protein

degradation rate constant, and mτ = m(t− τ ).

As in the last example, the system has delayed negative feedback. It

is therefore expected that oscillations can be produced with a sufficiently

long time delay. In this case, we want the oscillations to have a period

of about 24 hours. It turns out that this occurs if the time delay τ = 4

hours, as shown in Fig. 19. We see that the mRNA level peaks before the

protein level, which has been observed in the Drosophola (house fly) eye,

where many studies on circadian gene expression have been performed.

The rhythm shown in Fig. 19 is called a free-running rhythm, since

there is no input from a light source. In the animal, this input is provided

by the retina via the retino-hypothalamic tract. This input acts to entrain
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mRNA and Protein Oscillations in Scheper 
Model

mRNA
protein

Oscillations in mRNA lead oscillations in protein levels

Figure 19: Period mRNA and effective protein time courses in the DDE model. The free-running

period is 24.6 hr.

the oscillator to the light/dark cycle. In the Scheper model, best results

were achieved when light input was modeled as an increase in the protein

degradation rate, qp. Figure 20 shows that when short pulses of doubled

qp are applied at a period of exactly 24 hr the oscillator is entrained to

this period (rather than the free-running period of 24.6 hr). In fact, when

the stimulus period is as long as 28 hr the oscillator is still entrained. A

similar sort of entrainment process is thought to occur in animals.

Probably the most well-known model for circadian gene expression

was developed by Albert Goldbeter in 1995. This is instructive since



36

Entrainment Through Periodic Stimulation

The Scheper oscillator is subjected to periodic 1-hr doubling of protein
degradation rate qp . Free-running period is 24.6 hr.

Stimulus period = 24 hr

Stimulus period = 28 hr

(dashed = free-running)

Figure 20: Entrainment of the Scheper model occurs when it is subjected to short periodic pulses

in which qp is doubled.

the rhythm also depends on a time delay between transcription of PER

mRNA, but this time delay is implicit in the system, rather than explicit

as in the Scheper model. The system diagram is shown in Fig. 21. There

are variables for the period mRNA (M), unphosphorlyated protein (P0),

singly phosphorylated protein (P1), doubly phosphorylated protein (P2),

and nuclear doubly phosphorylated protein (Pn). The implicit delay is
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due to the time required for the protein to be phosphorylated and then

transported from the cytosol into the nucleus.

nucleus

per
transcription n

PER 2

(P2)
PER1

(P1)
mRNA
   (M) (P0)

PER0

v5

vm v1

v2

v3

v4

vd

P

ks

Figure 21: System diagram for the Goldbeter model of circadian period gene expression. See

Goldbeter, 1995.

Since the delay is implicit, the equations are ordinary differential equa-

tions, rather than delay-differential equations. The per mRNA equation

is:

dM

dt
= vs

KI

KI + PN
− vm

M

Km + M

where the repression of transcription by nuclear PER is achieved by putting

Pn in the denominator of the transcription term. The second term reflects

degradation of the mRNA. (Note that translation does not come at the

expense of mRNA.) The P0 ODE incorporates translation that creates

protein, phosphorylation that converts P0 into P1 through the action of a

kinase, and dephosphorylation that converts P1 into P0 through the action

of a phosphatase:

dP0

dt
= ksM − v1

P0

K1 + P0
+ v2

P1

K2 + P1
.
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The other phosphorylated states are described by:

dP1

dt
= v1

P0

K1 + P0
− v2

P1

K2 + P1
− v3

P1

K3 + P1
+ v4

P2

K4 + P2

dP2

dt
= v3

P1

K3 + P1
− v4

P2

K4 + P2
− k1P2 + k2Pn − vd

P2

Kd + P2

where the linear terms reflect transport into and out of the nucleus. Note

that protein degradation only occurs in the doubly phosphorylated state,

and indeed this is the target of proteases that chew up protein. The P0

and P1 proteins are also targets, but to a much lesser extent.

Once the period protein is doubly phosphorylated it can move into

the nucleus and repress period transcription. The nuclear period protein

equation is:

dPn
dt

= k1P2 − k2Pn

This is the complete Goldbeter model, with 5 variables and 17 parame-

ters. Since there is no explicit time delay τ , one has a harder time adjusting

parameters to make the system produce a circadian rhythm. Goldbeter

found a good combination of parameter values for this. In subsequent

years he extended the model, and looked at questions such as entrainment

by light pulses.

One advantage that the Goldbeter model has over the Scheper model

is that the factors yielding the time delay (phosphorylation and nuclear

transport) are in the model, while they are treated as a black-box time
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delay in the Scheper model. Thus, the Goldbeter model is more mechanis-

tic. It also has more variables that can, in principle, but compared with

actual data. However, the Scheper model is more intuitive, and clearly

captures the idea that circadian oscillations in gene expression are due to

delayed negative feedback. As is typically the case, there is no “right”

model: both models have something to contribute to our understanding

of the biological system.
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