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The Hodgkin-Huxley Model

K+ channels

• The activation of K+ channels can be described by “gating particles” that are

either closed or open. Each satisfies a first-order kinetic scheme:

C
αn

βn
O

where αn is the closed-to-open transition rate (units of ms−1) and βn is the

open-to-closed transition rate (same units). The first-order kinetic equa-

tion for K+ channel gates comes from applying the Law of Mass Action to

this kinetic scheme, defining n as the fraction of gates that are open (or the

probability that a gate is open):

(1)
dn

dt
= αn(1− n)− βnn .

The rate coefficients both depend on V .

• The equilibrium value of n (denoted n∞) and time constant (τn) are both

V -dependent and satisfy:

(2) n∞ =
αn

αn + βn
and τn =

1

αn + βn
.

Using these, Eq. 1 can be rewritten as

(3)
dn

dt
=
n∞ − n
τn

.

• The first-order kinetic equation Eq. 3 is linear for a fixed value of V and can

be solved in response to a voltage step to a value V1:

(4) n(t) = n∞(V1)− (n∞(V1)− n0)exp(−t/τn(V1))

where n0 is the value of n at the start of the voltage step.

• It is possible using voltage clamp to find n∞ and τn from the K+ data. Then

the rate coefficients can be obtained using

(5) αn =
n∞
τn

and βn =
1− n∞
τn

.

Fitting the squid giant axon data,

(6) αn = 0.01
V + 55

1− exp(−(V + 55)/10)
and βn = 0.125exp

(
−(V + 65)

80

)
.
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• The K+ current in the HH model is then

(7) IK = ḡKn
4(V − VK).

Na+ channels

• The activation properties of Na+ channels are similar in form to those of K+

channels. This is reflected in the activation variable m.

(8)
dm

dt
= αm(1−m)− βmm or

dm

dt
=
m∞ −m

τm

and from fitting the squid giant axon data,

(9) αm = 0.1
V + 40

1− exp(−(V + 40)/10)
and βm = 4exp

(
−(V + 65)

18

)
.

• Na+ channels also inactivate, with inactivation variable h defined as the frac-

tion of channels not inactivated. Equations are

(10)
dh

dt
= αh(1− h)− βhh or

dh

dt
=
h∞ − h
τh

and from fitting the squid giant axon data,

(11) αh = 0.07exp

(
−(V + 65)

20

)
and βh =

1

exp(−(V + 35)/10) + 1
.

• The Na+ current in the HH model is then

(12) INa = ḡNam
3h(V − VNa).

The Hodgkin-Huxley model

• This is a 4-dimensional system of coupled ODEs (for the space-clamped sys-

tem) with two activation variables, an inactivation variable, and the V dy-

namics given by

(13)
dV

dt
= −(INa + IK + IL − Ie)/C

where Ie is the current applied through an electrode and the constant-conductance

leak current is

(14) IL = ḡL(V − VL)
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• When space is not clamped, impulses can propagate down an axon in a regen-

erative manner. These are called solitons by physicists, since the amplitude

of the wave (the impulse) does not decrease like a water wave does. The HH

model is a PDE in this case, with V equation

(15) C
∂V

∂t
= −INa − IK − IL + Ie +

d

4Ra

∂2V

∂x2

where d is the axon diameter and Ra is the axial resistance.

The effect of temperature

• The rate coefficients increase in a multiplicative manner with an increase in

temperature. This effect is captured in an ad hoc way with the Q10, which

is the multiplicative speedup factor when temperature is increased by 10o C.

Thus,

(16) α(V, T2) = α(V, T1)Q
T2−T1

10
10 and β(V, T2) = β(V, T1)Q

T2−T1
10

10 .

For the giant axon at 6o C, Q10 ≈ 3.

• In terms of time constants and infinity functions, the effect of temperature is

included by making the time constants smaller:

(17) τ(V, T2) = τ(V, T1)/Q
T2−T1

10
10

and there is no effect on the infinity functions.

• The maximum conductance is also increased by an increase in temperature.

For ion type x,

(18) ḡx(T2) = ḡx(T1)Q
T2−T1

10
10

but for conductances the Q10 is smaller than for channel rates, Q10 ∈ [1.2, 1.5]

for conductances.


