Introduction to Computational Neuroscience (Fall 2023)

The Hodgkin-Huxley Model

K^+ channels

• The activation of K⁺ channels can be described by "gating particles" that are either closed or open. Each satisfies a first-order kinetic scheme:

C
$$\leftarrow \alpha_n \rightarrow O$$

where α_n is the closed-to-open transition rate (units of ms⁻¹) and β_n is the open-to-closed transition rate (same units). The first-order kinetic equation for K⁺ channel gates comes from applying the Law of Mass Action to this kinetic scheme, defining n as the fraction of gates that are open (or the probability that a gate is open):

(1)
$$\frac{dn}{dt} = \alpha_{\rm n}(1-n) - \beta_{\rm n}n \quad .$$

The rate coefficients both depend on V.

• The equilibrium value of n (denoted n_{∞}) and time constant (τ_n) are both V-dependent and satisfy:

(2)
$$n_{\infty} = \frac{\alpha_{n}}{\alpha_{n} + \beta_{n}} \text{ and } \tau_{n} = \frac{1}{\alpha_{n} + \beta_{n}}.$$

Using these, Eq. 1 can be rewritten as

(3)
$$\frac{dn}{dt} = \frac{n_{\infty} - n}{\tau_{\rm n}}.$$

• The first-order kinetic equation Eq. 3 is linear for a fixed value of V and can be solved in response to a voltage step to a value V_1 :

(4)
$$n(t) = n_{\infty}(V_1) - (n_{\infty}(V_1) - n_0)\exp(-t/\tau_n(V_1))$$

where n_0 is the value of n at the start of the voltage step.

• It is possible using voltage clamp to find n_{∞} and τ_n from the K⁺ data. Then the rate coefficients can be obtained using

(5)
$$\alpha_{\rm n} = \frac{n_{\infty}}{\tau_{\rm n}} \quad \text{and} \quad \beta_{\rm n} = \frac{1 - n_{\infty}}{\tau_{\rm n}}$$

Fitting the squid giant axon data,

(6)
$$\alpha_{n} = 0.01 \frac{V + 55}{1 - \exp(-(V + 55)/10)}$$
 and $\beta_{n} = 0.125 \exp\left(\frac{-(V + 65)}{80}\right)$

• The K⁺ current in the HH model is then

(7)
$$I_{\rm K} = \bar{g}_{\rm K} n^4 (V - V_{\rm K})$$

$$Na^+$$
 channels

• The activation properties of Na⁺ channels are similar in form to those of K⁺ channels. This is reflected in the activation variable m.

(8)
$$\frac{dm}{dt} = \alpha_{\rm m}(1-m) - \beta_{\rm m}m \quad \text{or} \quad \frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_{\rm m}}$$

and from fitting the squid giant axon data,

(9)
$$\alpha_{\rm m} = 0.1 \frac{V + 40}{1 - \exp(-(V + 40)/10)}$$
 and $\beta_{\rm m} = 4\exp\left(\frac{-(V + 65)}{18}\right)$.

• Na⁺ channels also inactivate, with inactivation variable h defined as the fraction of channels *not inactivated*. Equations are

(10)
$$\frac{dh}{dt} = \alpha_{\rm h}(1-h) - \beta_{\rm h}h \quad \text{or} \quad \frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_{\rm h}}$$

and from fitting the squid giant axon data,

(11)
$$\alpha_{\rm h} = 0.07 \exp\left(\frac{-(V+65)}{20}\right)$$
 and $\beta_{\rm h} = \frac{1}{\exp(-(V+35)/10)+1}$.

• The Na⁺ current in the HH model is then

(12)
$$I_{\rm Na} = \bar{g}_{\rm Na} m^3 h (V - V_{\rm Na}).$$

The Hodgkin-Huxley model

• This is a 4-dimensional system of coupled ODEs (for the space-clamped system) with two activation variables, an inactivation variable, and the V dynamics given by

(13)
$$\frac{dV}{dt} = -(I_{\rm Na} + I_{\rm K} + I_{\rm L} - I_{\rm e})/C$$

where $I_{\rm e}$ is the current applied through an electrode and the constant-conductance leak current is

(14)
$$I_{\rm L} = \bar{g}_{\rm L}(V - V_{\rm L})$$

• When space is not clamped, impulses can propagate down an axon in a regenerative manner. These are called **solitons** by physicists, since the amplitude of the wave (the impulse) does not decrease like a water wave does. The HH model is a PDE in this case, with V equation

(15)
$$C\frac{\partial V}{\partial t} = -I_{\rm Na} - I_{\rm K} - I_{\rm L} + I_{\rm e} + \frac{d}{4R_{\rm a}}\frac{\partial^2 V}{\partial x^2}$$

where d is the axon diameter and $R_{\rm a}$ is the axial resistance.

The effect of temperature

• The rate coefficients increase in a multiplicative manner with an increase in temperature. This effect is captured in an ad hoc way with the Q_{10} , which is the multiplicative speedup factor when temperature is increased by 10° C. Thus,

(16)
$$\alpha(V,T_2) = \alpha(V,T_1)Q_{10}^{\frac{T_2-T_1}{10}}$$
 and $\beta(V,T_2) = \beta(V,T_1)Q_{10}^{\frac{T_2-T_1}{10}}$.

For the giant axon at 6° C, $Q_{10} \approx 3$.

• In terms of time constants and infinity functions, the effect of temperature is included by making the time constants smaller:

(17)
$$\tau(V,T_2) = \tau(V,T_1)/Q_{10}^{\frac{T_2-T_1}{10}}$$

and there is no effect on the infinity functions.

• The maximum conductance is also increased by an increase in temperature. For ion type x,

(18)
$$\bar{g}_x(T_2) = \bar{g}_x(T_1)Q_{10}^{\frac{T_2-T_1}{10}}$$

but for conductances the Q_{10} is smaller than for channel rates, $Q_{10} \in [1.2, 1.5]$ for conductances.