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The Basis of Electrical Activity in the Neuron

The Nernst-Planck equation

• Fick’s law of diffusion (1855) states that “The molar flux due to diffusion is

proportional to the concentration gradient”. Also, diffusion of the substance

is down the gradient. Thus, in one dimension, if X is the concentration of the

diffusing substance:

(1) Jdiff = −DdX
dx

where D is the diffusion constant.

• If the diffusing substance is charged, and there is an electric field, then the

particles will drift in response to the field. The flux is

(2) Jdrift = −DF
RT

zXX
dV

dx

where F is Faraday’s constant, R is the gas constant, T is temperature

(in kelvins), and zX is the valence (charge) of the ion that is drifting in the

field.

• When both processes happen, i.e., electrodiffusion, then the total flux of par-

ticles is the sum of Jdiff and Jdrift:

(3) JX = Jdiff + Jdrift = −D
(
dX

dx
+
zXF

RT
X
dV

dx

)
This equation was developed by Nernst (1888) and Planck (1890) and is called

the Nernst-Planck equation.

Current and flux

• The amount of positive charge flowing per unit time through a conductor

such as an ion channel is the current, measured in amperes (A). The cur-

rent density is the current flow per unit of cross-sectional area, and will be

denoted as I. (Note that I is often used to also denote the current, so there

is ambiguity. In the text, I means current density.) The typical units are µA

cm−2.

• The relationship between current density and flux of substance X is

(4) IX = FzXJX
1
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The sign of the current for positive ions flowing out of the cell through channels

is positive (note that x = 0 inside the cell and > 0 outside the cell). So

outward currents are positive. Positive ions flowing into the cell through

channels is negative. So inward currents are negative. Negative ions

flowing into the cell generate a positive, outward current!

• If K+, Na+, and Cl− are moving through ion channels, then

Ii = INa + IK + ICl(5)

= FzNaJNa + FzKJK + FzClJCl(6)

where Ii is the total current through the channels.

The Nernst equation

Nernst (1888) derived an equation for the equilibrium voltage for a single type of ion

subject to electrodiffusion. This equilibrium voltage is called the Nernst potential,

and it is given by the Nernst equation:

(7) VX =
RT

zXF
ln
Xout

Xin

The Goldman-Hodgkin-Katz equations

• If there is more than one type of ion flowing across the membrane, then an

equilibrium potential will be reached such that the flux due to concentration

gradients equilibrates with that due to electrical drift for the different ion types

combined. (The fluxes won’t be equilibrated for each ionic species separately.)

The equilibrium voltage, called the resting membrane potential in the case

of neurons, is given by the Goldman-Hodgkin-Katz voltage equation:

(8) Vm =
RT

F
ln
PKKout + PNaNaout + PClClin
PKKin + PNaNain + PClClout

where PX is the permeability to ion X, and Xin is the concentration of the ion

inside the cell, while Xout is the concentration outside. This reduces to the

Nernst equation when there is only one type of ion.

• The Goldman-Hodgkin-Katz current equation relates the current gener-

ated by an ion X when it crosses a semipermeable membrane and when there

is an ion concentration difference. This is:

(9) IX = PXz
2
X

F 2V

RT

(
Xin −Xoute

−zXFV/RT

1 − e−zXFV/RT

)
.

Note that the relationship between voltage V and current I is nonlinear in

this equation.
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• A linear approximation is often used to relate current and voltage. This is

similar to Ohm’s law, so is called an Ohmic approximation. It is

(10) IX = gX(V − VX)

where the parameter gX is the conductance and V −VX is the driving force.

This approximation is typically quite good, except in the case of Ca2+, where

it deviates a lot from the GHK curve at higher voltages (this is because the

intracellular concentration of Ca2+ is extremely small). The resulting linear

I − V relation is called quasi-ohmic.

The capacitive current

• How do the currents flowing across a semipermeable membrane affect the

voltage? This is what the capacitive current equation tells us. The strength

of the electric field set up through the separation of ions between plates of

a capacitor is proportional to the magnitude of the excess charge q on the

plates. The constant of proportionality is called the capacitance (C) and is

measured in farads. It indicates how much charge can be stored on a capacitor

for a given potential difference:

(11) q = CV.

Said another way, the capacitance C is a measure of how much charge q needs

to be transferred from one conductor to another to create a given potential

difference V .

• As the charge q changes, due to flow through ion channels for example, so too

will V . For neural membranes, C ≈ 1 µF cm−2. Differentiating w.r.t.,

(12) IC = C
dV

dt

which is called the capacitive current. It tells how voltage changes due to

an electrical current.

Equivalent circuit and Kirchoff’s current law

• The ionic currents across a patch of neural membrane can be represent by an

electrical circuit, called an equivalent circuit. This represents the membrane

as a capacitor, and the current through each ion channel as a resistor in series

with a battery. The resistor reflects the ion channel while the battery reflects

the driving force due to the Nernst potential.

• Kirchoff’s current law states that the sum of the current flowing through

a parallel circuit is conserved. Recalling that Ii is the current through the
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ion channels. If there is an electrode attached to the patch of membrane that

introduces an applied current Ie, then

(13) I + Ie/a = Ii + IC

where I is the total current flowing through the membrane and a is the area

of the patch of membrane. (This is needed because the applied current is not

a current density, while other currents are really current densities.)

• For an isolated membrane patch (not connected to more membrane) I = 0.

Putting in other terms and rearranging,

(14) C
dV

dt
= −(INa + IK + IL − Ie/a)

where the leak current IL may be a Cl− current or a current due to a mix of

ions flowing through non-specific channels. This is the voltage equation.

• Thévenin’s theorem states that any combination of voltage sources and

resistances across two terminals can be replaced by a single voltage source

and a single resistor. If the voltage sources are due to Na+, K+, and leak,

then according to this theorem,

(15) Vm =
gNaVNa + gKVK + gLVL

gm

where gm is the specific membrane conductance,

(16) gm = gNa + gK + gL.

The reciprocal of this is the specific membrane resistance,

(17) Rm =
1

gm

.

The word “specific” is included since the conductance (or resistance) is per

unit area of membrane.

Neural dynamics of a passive membrane

• The voltage equation can be written as:

(18) C
dV

dt
= gm(Vm − V ) + Ie/a

or

(19) C
dV

dt
=
Vm − V

Rm

+ Ie/a.
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• Because the voltage equation is linear we can solve it. Assuming that the

system is at rest at equilibrium (Vm) when the external current is applied, the

solution is

(20) V (t) = Vm +
RmIe

a

(
1 − e−t/τ

)
where τ ≡ RmC is called the membrane time constant. The equilibrium

with the external current on is

(21) V∞ = Vm +
RmIe

a
,

so one could rewrite Eq. 20 as

(22) V (t) = Vm + (V∞ − Vm)
(
1 − e−t/τ

)
.

The membrane time constant (τ) is the time to go approximately 2/3 (actually

1 − 1/e) of the way from the original equilibrium to the new equilibrium. A

large τ means it takes a long time to go from the old to the new equilibrium.

• Ohm’s law says that ∆V = IR. Applying this, where ∆V = V∞ − Vm (the

new equilibrium minus the old one) and I = Ie, gives an equation for the

input resistance:

(23) Rin = ∆V/Ie.

This tells how much an applied current will change the equilibrium. A big

input resistance means an applied current will have a large effect on the equi-

librium voltage.

Compartmental model

• In the single-compartment model, the total current was 0, reflecting conserva-

tion of charge. In a compartment within a compartmental neuron model, the

membrane current is equal to the sum of the leftward and rightward axial cur-

rents. The axial resistance is proportional to the length l of the compartment

(approximated as a cylinder), and inversely proportional to its cross-sectional

area, πd2

4
. So the axial resistance is

(24) axial resistance =
4Ral

πd2

where Ra is the specific axial resistance. For compartment j, using Ohm’s

law, the total membrane current is

(25) Ij =
Vj+1 − Vj
4Ral/πd2

+
Vj−1 − Vj
4Ral/πd2

where the first term is the current into compartment j + 1 and the second is

the current into compartment j − 1.
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• Replacing Eq. 25 into Eq. 13 and replacing the patch area a with the sur-

face area of the compartment cylinder, a = πdl, one gets the fundamental

equation of a compartmental model:

(26) C
dVj
dt

=
Vm − Vj
Rm

+
d

4Ra

(
Vj+1 − Vj

l2
+
Vj−1 − Vj

l2

)
+
Ie,j
πdl

There would be an equation like this for each compartment, so j = 1, . . . , N

where N is the number of compartments.

• Boundary conditions are need at the left and right boundaries. There are

several options. At the left end, for example, V1 = 0 and Eq. 26 is not used

in the first compartment if a killed end condition is applied. If the sealed

end condition is used, then Eq. 26 is used in compartment 1, with V0 = V2 in

the calculation of V1.

The cable equation

• In the limit of a large number of very short compartments, the compartmental

model converges to a partial differential equation called the cable equation:

(27) C
∂V

∂t
=
Vm − V

Rm

+
d

4Ra

∂2V

∂x2
+
Ie
πd

in which the contributions of current from left and right of a point in the cable

is through the second partial derivative, which is the diffusion operator, and

Ie is the injected current per unit length.

• For a semi-infinite cable with a current source of Ie applied at x = 0 and a

sealed end boundary condition, the steady state voltage is

(28) V (x) = Vm +R∞Iee
−x/λ

where λ is called the length constant. This determines the rate of decay of

the voltage with distance from the current source. A large λ means a slow

decay with distance. The formula for the length constant is

(29) λ =

√
Rmd

4Ra

.

Thick neural processes have large length constants.

• The input resistance of a semi-infinite cable, R∞ tells how much the voltage

changes in response to an applied current. It’s value is

(30) R∞ =
Rm

πdλ
The thicker neural processes have smaller input resistance, so are not as sen-

sitive to applied currents as are thin processes.


