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ABSTRACT Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (CAMP) in
insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations
have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate
cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the
absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic
@ cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypoth-
esize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for 8 cells, in which meta-
bolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination
of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been

observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.

INTRODUCTION

The electrical activity that raises Ca®>" to drive hormone
secretion is in many cases triggered by hormone or peptide
signals, which regulate ion channels and kinases via second
messengers such as cyclic adenosine monophosphate
(cAMP). Second messengers may also amplify the Ca®"
signal by enhancing trafficking of exocytotic vesicles to
the plasma membrane (1-3). The main signal for insulin
secretion from pancreatic  cells, in contrast, is glucose
metabolism, which raises Ca>" by closure of ATP-depen-
dent K (K(ATP)) channels. Receptor-generated second
messengers are important, but act mainly to enhance the
effects of Ca* (4). In @ cells, cAMP is increased potently
by the gut-derived hormones glucagon-like peptide-1 and
gastric inhibitory polypeptide, which are called incretins,
because they mediate the increased secretion seen when
glucose is delivered orally rather than by injection (5).

It has further been demonstrated that glucose itself in-
creases the cAMP concentration; this has been shown in
rat INS-1E insulinoma cells (6), MING6 cells (7,8), primary
rat @ cells (9,10), mouse @ cells (8,11), and human @ cells
(12). For the human cells, it was shown that lipotoxicity
mediated by palmitate involves, at least in part, reduction
of the glucose stimulation of cAMP. Thus, cAMP plays an
important physiological role as a second messenger in insu-
lin release from islets and is regulated by both hormones and
glucose metabolism (13,14). Recent studies using FRET-
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based sensors (7) and evanescent-wave microscopy (8,15)
have shown that the intracellular cAMP concentration oscil-
lates in incretin-stimulated or glucose-stimulated (§ cells or
cell lines. These oscillations range from fast (~1 min period)
(7,15) to slow (~5 min period) (8,16). When measured
simultaneously with intracellular Ca2+, the cAMP concen-
tration has been observed to oscillate either in phase
(8,15) or out of phase with fast Ca®" oscillations (7). In
addition, slow oscillations of cAMP have been reported in
the presence of stimulatory glucose while the Ca®" concen-
tration is non-oscillatory (8), or Ca*" entry is inhibited by
EGTA or a Ca®"-channel blocker (8,16). Such oscillations
are noteworthy, as they may contribute to pulsatile insulin
secretion observed from islets in which the Ca?" level is
stable (17). Given these complex findings, the oscillation
mechanism or mechanisms are not obvious.

The Ca’*" concentration in glucose-stimulated islets is
typically oscillatory. These oscillations are due to bursting
electrical activity, which itself exhibits both fast and slow
oscillations. We have proposed that these two classes of os-
cillations result from two different mechanisms. One mech-
anism is Ca’" feedback onto K channels (18-20). We refer
to the resulting fast oscillations in Ca*" concentration as
electrical Ca®" oscillations, and in this case the cytosolic
levels of the adenine nucleotides ATP, ADP, and AMP
remain relatively constant (21). The second mechanism
for bursting electrical activity is oscillations in metabolism,
possibly mediated by glycolytic oscillations (22-24). In this
case, nucleotide levels exhibit significant oscillations, which
would be reflected in the electrical activity due to the actions
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of ADP and ATP on K(ATP) channels. These oscillations in
metabolism can persist when the Ca®" concentration is sta-
ble, demonstrating that these metabolic oscillations (MOs)
are not simply responding to oscillatory Ca*", though they
are strongly influenced by the Ca®" level (25).

The finding that MOs can persist in the absence of Ca*"
oscillations is strikingly similar to the finding that cAMP
oscillations can occur with a stable level of Ca®". This leads
us to propose in this report that the various data on cAMP os-
cillations in 8 cells and cell lines, including their relationship
with the cytosolic Ca?* concentration and their persistence in
stable levels of Ca*", can be accounted for by a single model
that incorporates the two mechanisms for Ca®" oscillations
described above. Using this model, called the dual oscillator
model (DOM) (23), we show that the slow (5 min) cAMP
oscillations occur naturally as the result of MOs.

We hypothesize that this is mediated primarily by oscilla-
tions in AMP, which inhibits adenylyl cyclase (AC) (26-28).
Although we propose that slow cAMP oscillations are due
to MOs, the faster cAMP oscillations are likely due to Ca*t
oscillations. These cAMP oscillations could be either in phase
or out of phase with Ca®", depending on the Ca>" affinities of
the several forms of Ca®"-activated AC and phosphodies-
terase (PDE) expressed in (3 cells (29-31). The possible phase
relationships between Ca®* and cAMP during fast oscillations
have been explored previously (32). Our explanation is similar
to the explanation in that article, although implemented differ-
ently (see the Discussion). If AC is more sensitive to changes
in Ca®* than PDE, then cAMP oscillations will be in phase
with those of Ca”; if PDE is more sensitive, then cAMP os-
cillations will be in antiphase with those of Ca®™.

In this article, we explore the range of possible cAMP os-
cillations, and their relationship to Ca*t oscillations, given
that both Ca*" and AMP influence the cAMP concentration.
This interpretation is made in the context of the DOM, and
provides the most parsimonious explanation for the oscilla-
tory cAMP in the full range of behaviors observed in islets,
which are otherwise difficult to explain. This model for
cAMP oscillations also generates predictions that can be
tested experimentally.

MATERIALS AND METHODS

‘We base our model for cAMP oscillations on the DOM, which accounts for
both fast and slow Ca®* oscillations in g cells (23,33). Although the meta-
bolic and electrical components can oscillate independently, they are bidi-
rectionally coupled, and oscillations in one component impact the other
(see Fig. 7). In the DOM, the MOs are due to oscillations in glycolysis,
which are conditional, i.e., they depend on the values of system parameters.
When other parameters are permissive, the MOs generally occur only for an
intermediate range of glucose levels. When slow MOs are absent, faster
electrical Ca®* oscillations may still occur.

Alternatively, the fast and slow oscillations may coexist, producing com-
pound bursting, which consists of episodes of fast oscillations separated by
long periods of electrical silence (34-36). The driver of glycolytic oscillations
in the DOM is the allosteric enzyme phosphofructokinase (PFK). This enzyme
is stimulated by its product fructose 1,6-bisphosphate (FBP), causing a surge
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of FBP production (positive feedback) but also partially depleting its substrate,
fructose 6-phosphate, which brings FBP back down (negative feedback). The
substrate level is controlled by the enzyme glucokinase (GK) and is increased
when the glucose level is increased. We therefore use the GK reaction rate
(Jok) as a surrogate for the glucose level (i.e., Jok increases with glucose).

To address the proposition that the MOs are an independent driver of
cAMP oscillations, we couple the DOM to dynamics for cAMP. We utilize
an equation for cAMP adapted from the models of Yu et al. (37) for the
neuron R15 in the sea slug Aplysia and of Fridlyand et al. (32) for the
B cell. In those models, AC and PDE have both Ca**-sensitive and Ca®*-
insensitive components. In Yu et al. (37) and Lindskog et al. (38), AC
and PDE were modeled as sensitive to Ca>* through a calmodulin cascade,
but we simplify this effect to a third-order saturating function of Ca®"
alone. This simplification has minimal effect on the output. We denote
the AC and PDE affinities for Ca>* as K,cea and Kpdeca, respectively. We
adjust these sensitivities to high- and low-affinity values to consider the
effect of different sensitivity levels on the phase between cAMP and
Ca*" during oscillations (see Table 1).

Studies of purified ACs have shown that they have high affinity for the
substrate ATP (K, ~ 100 uM) (39), and there is evidence that they provide
the majority of basal cAMP in the INS-1E g-cell line (6). Davis and Lazarus
(40) reported a somewhat larger K, (320 uM), and it is possible that the
affinity for ATP may be lower in intact cells than in isolation, but in the
absence of evidence for this, we assume that AC is saturated for ATP and
that ATP does not play a major role in driving cAMP oscillations. We pro-
pose instead that AMP, an inhibitor for AC with affinity ~200 uM (26-28),
couples metabolism to cAMP production. We model AC as a decreasing
function of AMP that has half-inhibition constant Kycamp (Eq. 1). Because
there is uncertainty about the importance of different AC isoforms and
about the affinity in 8 cells, we explore, in the section on sensitivity anal-
ysis, a range of possible affinity values.

Combining these elements results in the following equations:

d [CAMP] Kicam
- Vac—p -V &) 1
i [AMP] + Kpeamp ™ v
where
V. Vv < 2
ac = Vac <0(ac + ‘Bac%) ( )
and
P [cAMP]
Vide = Vode | Xpde + Boe ’
pd pd pde + Bpa o+ K; teca ] [CAMP] + Kpdecamp
(3)

Base parameter values are listed in Table 1.

TABLE 1 Base parameter values for the cAMP component of
the model

Kacamp =200 uM Kpdecamp =3 uM
Kacea = 0.1 /.LM Kpdeca =0.1 ,“M
Vae = 0.0006 uM/ms Vpde = 0.0024 uM/ms
o, = 0.5 pte = 0.4

Bac =3 6pdc =12
p=3

The above parameters were used except as noted in the figure legends.
Values were taken from Yu et al. (37), except for K,cca, Kdeccas and p, which
are generated by fitting an equilibrated calcium/calmodulin expression in
Yu et al. (37) to ¢ /(c? + KP). Parameter changes for each figure are stated
explicitly in the caption.
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We do not incorporate the feedback of cAMP on Ca*" present in the
model of Ni et al. (41) as this is not needed to account for the experimental
data we consider. In the Fridlyand study (32), the cAMP model of Yu et al.
(37) was combined with an electrical model for the § cell and used to
study Ca®* modulation of cAMP production through AC and PDE. The
maximal production rate of the Ca>"-dependent AC component was varied
to simulate GLP-1 activation of AC and to demonstrate that when the
effect on AC is dominant, Ca®" and cAMP oscillate in phase. In contrast,
when the effect of Ca®* on PDE is dominant, the oscillations are out of
phase. Below, we show similar effects by varying the AC and PDE sensi-
tivities to Ca*™.

Our model is similar to the model of Fridlyand et al. (32) with respect
to effects of Ca>" on cAMP but can, in addition, account for cAMP
oscillations in the absence of Ca®' oscillations. This is achieved by
combining Eqs. 1-3 with the DOM, which produces fast and slow Ca®*
oscillations and can produce slow MOs when Ca®" is fixed. The version
of the DOM used here is based on that of Watts et al. (42), with minor
modifications to make AMP dynamic. Those changes are spelled out in
the Appendix.

We solve the system using XPPAUT (43) and Matlab (The Mathworks,
Natick, MA). Code may be found in the Supporting Material or downloaded
from http://www.math.fsu.edu/~bertram/software/islet.

RESULTS
Slow oscillations in cAMP are due to MOs

The cAMP oscillations reported in the literature are
sometimes slow, with a period of ~5 min, and sometimes
fast, with a period of ~1 min or less. We begin by
addressing the origin of the slow oscillations using
the DOM.

The slow glycolytic oscillations in the DOM travel
down the metabolic pathway, producing oscillations in
the nucleotides AMP, ADP, and ATP. The latter two act
on K(ATP) channels to produce periodic bursts of electri-
cal activity. Each burst brings Ca*" into the cell, resulting
in oscillations in the intracellular Ca®" concentration
(Fig. 1 A).

The rise in ATP levels that accompanies each pulse
of glycolytic activity comes at the expense of ADP and
AMP. In particular, AMP declines when FBP rises (Fig. 1,
C and E). Since AMP is an AC inhibitor, a decline in
AMP causes an increase in the cAMP concentration
(Fig. 1 G). In this way, slow glycolytic oscillations produce
slow oscillations in the cAMP level that are in phase with
slow Ca®" oscillations.

The slow oscillations in cAMP shown in Fig. | G (first
20 min) have a period similar to cAMP oscillations
measured using evanescent-wave fluorescence imaging in
islet 8 cells (16) and in MING6 cells (8) when stimulated
with glucose. In addition, simultaneous measurements of
cAMP and Ca’" using this same technique showed that
the two oscillated in phase with one another (Fig. 2 D in
Dyachok et al. (8) and Fig. 5 B in Tianet al. (16)), as is
the case in Fig. | here. Other studies showed out-of-phase
oscillations of cAMP and Ca2+, but these oscillations were
much faster (7). We consider the faster oscillations below
(see Fig. 4).
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Membrane hyperpolarization can terminate cAMP
oscillations by inhibiting glycolytic oscillations

It has been shown that cAMP oscillations can be inhibited
by hyperpolarization of the plasma membrane in MIN6
and islet § cells (Fig. 3 in Dyachok et al. (8)). This hyperpo-
larization was achieved by the addition of diazoxide (Dz), a
K(ATP) channel activator, to medium containing a stimula-
tory level of glucose. The most direct explanation for the
lack of cAMP oscillations under these conditions is that
the hyperpolarization terminates Ca®" oscillations, which,
through actions on AC and PDE, terminate cAMP oscilla-
tions. In Fig. 1, we present an alternative explanation for
the termination of cAMP oscillations by membrane hyper-
polarization, which is more complex but accounts for a
wider range of phenomena. We begin with slow Ca*" oscil-
lations in Fig. 1 A that are terminated with the simulated
application of Dz, which brings Ca®" to a low, steady level.
With the reduction of Ca*" influx, less pumping is required
to keep the cell in homeostasis, so that ATP utilization is
reduced, the ATP concentration rises, and the corresponding
AMP level drops. ATP is a well-known inhibitor of PFK
(44,45), so the rise in ATP partially inhibits PFK and even-
tually terminates the glycolytic oscillations (Fig. 1 C) and,
consequently, the oscillations in the ATP and AMP levels
(Fig. 1 E). In our model, it is the termination of AMP oscil-
lations that is responsible for the termination of cAMP oscil-
lations (Fig. 1 G).

In the simulations in the left column of Fig. 1, Dz termi-
nated both the Ca*"oscillations and the AMP oscillations,
so in an experimental setting, it would not be apparent
which factor is responsible for terminating the cAMP os-
cillations. The model, however, provides a way to determine
this. It predicts that it is possible to maintain MOs with Dz-
induced membrane hyperpolarization, which was confirmed
experimentally in Merrins et al. (25). The DOM, now
augmented with AMP-sensitive production of cAMP, makes
a further prediction that cAMP oscillations can persist, in
some cases, in the presence of Dz.

This is illustrated in the right column of Fig. 1, where the
persistence of MOs is a consequence of a lower GK rate than
in the left column. We expect, however, that in the presence of
Dz, the oscillation amplitude would be reduced and the fre-
quency possibly altered compared to glucose alone (Fig. 1
H).Infact, Dyachok et al. (8) reported that cAMP oscillations
persisted with reduced amplitude in the presence of a Ca>"
channel blocker (their Fig. 2 A) and in EGTA (their Fig. 2 B).

Depolarization can rescue cAMP oscillations in
the absence of Ca®" oscillations

To test whether cAMP oscillations are due to Ca*>" oscilla-
tions, Dyachok et al. used a Ca®>" clamp protocol (8). They
showed in MING6 and islet 8 cells (Fig. 3, C and D, respec-
tively, in the Dyachok study (8)) that cAMP oscillations
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cAMP oscillations can occur without calcium oscillations. Application of Dz is simulated by setting the K(ATP) channel open fraction to 1

(Eq. 9). In the left column, GK activity (Jgx = 0.14 uM/s) is slightly larger than in the right column (Jgx = 0.12 uM/s). Although Ca*" oscillations cease
in both (A) and (B), FBP, AMP (E and F), and cAMP (G and H) oscillations may be abolished (left column) or persist (right column). Bkap = 16,000 pS.

were initiated when the glucose level was increased from
3 mM to 11 mM in the continued presence of Dz and KCI.
That experiment is simulated in Fig. 2, where Dz is applied
initially in the presence of a substimulatory level of glucose.
This results in a low and stationary level of Ca*™ and no oscil-
lations in metabolism or cAMP. The addition of KCl is simu-
lated by raising the K™ Nernst potential. The depolarization
increases Ca®" but does not initiate either Ca>" oscillations
(Fig. 2 A) or oscillations in metabolism (Fig. 2, B and C) or
cAMP. However, when the glucose level is raised to a stimu-
latory level (simulated by increasing the GK rate), slow oscil-
lations are initiated in metabolism, which lead to oscillations
in cAMP (Fig. 2 D). This occurs because the higher glucose
level activates PFK sufficiently to initiate glycolytic oscilla-
tions. After glucose is lowered to a substimulatory level, the
oscillations in metabolism and cAMP cease.
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Although metabolism was not measured in the study of
Dyachok et al. (8), their findings are consistent with the
simulation in Fig. 2 and with the hypothesis that the mech-
anism for the glucose-stimulated initiation of cAMP oscilla-
tions in the absence of Ca>" oscillations is activation of
MOs. In fact, Fig. 2 makes a prediction that can be tested
by measuring ATP and cAMP simultaneously.

Fig. 2 demonstrates the requirement for stimulatory
glucose levels in the production of oscillatory cAMP.
Fig. 3 demonstrates that Ca>* levels also have an important
effect, even though Ca®" is not oscillating. Specifically, it
shows that oscillations in cAMP that are terminated by hy-
perpolarization can often be rescued by elevated Ca®". In
this figure, glucose is at a stimulatory level throughout the
simulation, prompting oscillations in glycolysis and subse-
quent Ca”" and cAMP oscillations. Addition of Dz is then
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FIGURE 2 Glucose elevation, but not Ca*" oscillations, are required for cAMP oscillations. Depolarization with KCI in the presence of Dz (simulated by
raising the reversal potential for K™ from —75 mV to — 62.5 mV) is ineffective at generating oscillations in calcium (A) or cAMP (D). However, raising
glucose to a stimulatory level (simulated by increasing Jgx from 0.03 uM/s to 0.12 uM/s) induces oscillations in FBP (B), AMP (C), and cAMP without

oscillations in Ca*". Ziap = 16,000 pS.

simulated, immediately terminating Ca>" oscillations and
terminating metabolic and cAMP oscillations. Finally, the
cell is depolarized by simulated application of KCI. This
raises Ca2+, but does not produce Ca®" oscillations due to
the presence of Dz. The increase in Ca*" results in increased
ATP utilization by Ca>" pumps, lowering the mean ATP

A
0.25¢ Dz KCI
.|
0.2
Z o5
&
& 0.1
0.05¢
00 20 80 100
time (min)
C
1200 DZ KCl
——
1000
s
2
800
=
<
600
400 . . . ,
20 40 60 80 100
time (min)

level and thereby disinhibiting PFK. In this example, the
stimulation was sufficient to push PFK into a regime where
oscillations occur, restarting the glycolytic oscillator, and
thus restarting inhibitory AMP oscillations.

Figs. 2 and 3 together show that in our model, cAMP
oscillations are possible without Ca®" oscillations, provided
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FIGURE 3 Model prediction that depolarization can rescue cAMP oscillations. Sustained oscillations in Ca>* (A), metabolism (B and C), and cAMP (D) in
stimulatory glucose (Jgg = 0.13 uM/s) are suppressed by application of Dz. Ca*" immediately stops oscillating and cAMP transiently rings to an elevated
steady state. Depolarization with extracellular potassium (simulated by increasing the K™ Nernst potential, Vi, to —50 mV) is effective at generating oscil-

lations in metabolism and cAMP (D), but not in Ca>* (A). Zkap = 16,000 pS.
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that PFK is sufficiently active to support MOs. In Fig. 2, the
needed stimulation was provided by raising glucose,
whereas in Fig. 3, it was provided by raising Ca®*, which
reduced ATP and disinhibited PFK.

The protocol of Fig. 3 was used successfully by Merrins
et al. (25) to show that MOs in islets do not require Ca*" os-
cillations. However, NAD(P)H was measured, not cAMP.
The restarting of cAMP oscillations by depolarization
with KCl is a new model prediction.

Phase relationships of Ca?*and cAMP

As noted above, Landa et al. (7) reported antiphase oscilla-
tions of cCAMP and Ca”, or, more precisely, that cAMP fell
when Ca”" rose. In contrast, Dyachok et al. (15) reported in-
phase oscillations of cAMP and Ca®". In both studies, the
oscillations were fast (period ~1 min), which we interpret
to mean that the cAMP oscillations were driven by electrical
oscillations (EOs) in Ca® ™" rather than MOs. (Small, second-
ary oscillations of ATP are expected due to Ca*"-dependent
consumption of ATP by pumps and Ca**-dependent effects
on the mitochondrial production of ATP, but these would not
have much effect.) Fridlyand et al. (32), using a model in
which oscillations are driven primarily by electrical mecha-
nisms, varied the maximal rate of AC and PDE to show that
antiphase oscillations are expected when the effects of Ca®"
on PDE are dominant and in-phase oscillations when the
effects of Ca*™ on AC are dominant.

We show in Fig. 4 similar effects by varying the sensitiv-
ities of AC and PDE to Ca®". For these simulations, glyco-
lytic oscillations were suppressed by raising the activity of
GK so that the substrate for PFK was never depleted suffi-
ciently to bring down FBP, and hence glycolysis was
elevated but steady. In Fig. 4 A, each pulse of Ca®" leads
to a reduction in ATP, due to utilization by Ca*" pumps.
Thus, AMP increases during each Ca®" pulse. These oscil-
lations in AMP are small, however, and the effects of Ca®t
on AC or PDE dominate. In Fig. 4 B, AC is nearly saturated
at basal Ca>* levels, but PDE is sensitive to the range of
Ca’", so cAMP is lowered by each Ca*" pulse. (Out-of-
phase oscillations of cAMP and Ca*" can also be achieved
by reducing the maximal rate of AC (not shown), as in
Landa et al. (7).) In Fig. 4 C, both AC and PDE are sensitive
to the range of Ca>", and cAMP rises with each Ca®" pulse.

InFig. 5, we address the phase relationship between cAMP
and Ca®" during compound oscillations by varying the cal-
cium sensitivity parameters in AC and PDE, exactly as was
done for Fig. 4. In Fig. 5, glycolytic oscillations are present,
so compound oscillations in electrical activity and Ca*" are
generated, consisting of periodic episodes of fast bursts.
This results in compound AMP oscillations (Fig. 5 A).
AMP tends to decline during the burst episode due to the
increased metabolism that occurs during the upstroke of a
glycolytic oscillation. Superimposed on this are rapid and
large AMP increases due to the effects of increased Ca>* con-
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FIGURE 4 Sensitivities of AC and PDE to changes in Ca*>" control the
phase relationship in fast EOs. (A) Electrical oscillations, obtained by
setting Jox = 0.21 uM/s and g, = 18,000 pS, drive the use of ATP, gener-
ating small-amplitude AMP oscillations. (B) When basal Ca®" saturates
AC (Kyeea = 0.05 uM), cAMP is out of phase with Ca®*, as in Landa
et al. (7). (Out-of-phase oscillations can alternatively be produced by
lowering §,. from 3.0 to 1.0, similar to the procedure in the Landa study
(7).) (C) When basal Ca>" does not saturate AC (Kacca = 0.1 uM),
cAMP and Ca*" are in phase, as in Dyachok et al. (15).

centration during the fast bursts, as in Fig. 4 A. In this
example of compound bursting, the effects of glycolytic os-
cillations and those of Ca*" are comparable, unlike the
slow bursting shown in Fig. 1 (where glycolytic oscillations
drive AMP oscillations) and the fast bursting shown in
Fig. 4 (where Ca®" oscillations drive AMP oscillations).
This is because the amplitude of the MOs is much smaller
during compound oscillations, at least with our parameters.
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FIGURE 5 Sensitivities of AC and PDE to changes in Ca*>" control the
phase relationship of fast oscillations during compound bursting (8., =
17,500 pS and Jgx = 0.19 uM/s). (A) Slow MOs combine with [Cag+]i
oscillations to produce compound AMP oscillations. (B and C) Two cases
of AC and PDE sensitivity, as in the corresponding panels of Fig. 4. The
slow AMP oscillations add a slow component to cAMP oscillations. The
AMP teeth and fast [Ca”],- bursts within each slow episode affect cAMP
production as in the pure fast EOs in Fig. 4, resulting in cAMP oscillations
that are in phase or out of phase with Ca*".

For example, the amplitude of FBP is less than half of that in
Fig. 1 (not shown). The cAMP level now responds to the com-
pound AMP rhythm, as well as the Ca®" pulses produced by
the bursts. When PDE is the primary responder to Ca*" fluc-
tuations, the cAMP teeth will be downward during an episode
of bursts (Fig. 5 B). The teeth are upward when AC is the pri-
mary responder to Ca®" fluctuations (Fig. 5 C).
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Thus, whereas glycolytic oscillations drive the slow
component of the cAMP oscillations, the fast component
is driven by Ca*" acting on AC and PDE, and the cAMP
time course can either be in phase (Fig. 5 C) or antiphase
(Fig. 5 B) with the Ca®" time course, depending on the
affinities of AC and PDE to AMP and Ca”". To date, com-
pound cAMP oscillations have not been observed in islets,
but neither, to our knowledge, have compound Ca’" oscilla-
tions during dual Ca®*/cAMP measurements.

Sensitivity analysis

The most critical assumption in our model is that AC is in-
hibited by AMP and that AMP oscillates in a range to which
AC is sufficiently sensitive. Data in the literature tend to
support this (26-28) but are limited and not specific for
G cells.

Therefore, in this section, we vary the affinity of AC for
AMP and examine how sensitive the performance of the
model is to that value. For the curves in Fig. 6, we consider
AMP without taking Ca®" into account, though the AMP
amplitude is influenced by Ca®*. The relative contributions
of Ca*™ and AMP to cAMP oscillations will be addressed in
the Discussion. In our model, the inhibition of AC by AMP
operates through the factor

F = Kacamp/<AMP + Kacamp) (4)

in Eq. 1. In Fig. 6 A, we plot this factor for three different
values of Kycamp. As shown earlier, AMP oscillations pro-
duced by the DOM are smaller in amplitude during EOs
than during MOs. In Fig. 6 A, we plot the extent of these os-
cillations as horizontal blue and magenta bars, respectively.
The effect of AMP oscillations on AC over these ranges is
shown on the vertical axis for both the EO and the MO.
When Kycamp = 200 uM (middle curve), the EO would pro-
duce a range of output of ~0.23-0.24, or AF = 0.01 (right
axis, blue triangles). The MO would produce output in the
range ~0.18-0.25, or AF = 0.07 (left axis, magenta trian-
gles). The output range is smaller, however, when K,camp
is decreased to 50 uM, since in this case, AC is largely in-
hibited at the AMP levels that would occur during either
the EO or the MO. The output range is largest when
Kacamp 18 increased to 800 uM, with a range of AF = 0.1
during the MO and AF = 0.02 during the EO.

It is apparent from Fig. 6 A that the effect of AMP oscil-
lations on the AC output increases with K,camp. This is
quantified in Fig. 6 B, where the output range, AF, of the
AMP-dependent factor of AC is plotted against the param-
eter Kycamp- This assumes the same range of variation of
AMP for the EO and MO that was used in Fig. 6 A. For
example, when Kycamp = 200u M, the span of the output
range is 0.01 for the EO and 0.07 for the MO, as indicated
in Fig. 6 A. Presented in this way, it is evident that the
influence of AMP oscillations on AC depends greatly on
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FIGURE 6 The range of cAMP oscillations depends on AMP oscillations and AC sensitivity to AMP. (A) The portion of cAMP dynamics that depends on
AMP (F in Eq. 4) is plotted versus AMP for three affinity values (thick black curves). The range of AMP values produced by an MO with the DOM is shown
as the longer magenta bars. The range of AMP values produced by an EO is shown as the shorter blue bars. The change in F (AF) during an MO is shown in
magenta on the left axis, whereas the change that occurs during an EO is shown in blue on the right axis. (B) AF as a function of the AMP affinity parameter

Kacamp for either MOs or EOs.

the AMP affinity of AC, but over a wide range of affinities
the influence will be substantial. Thus, as long as the affin-
ity of AC for AMP is near the range of AMP oscillation
values, the latter oscillations are expected to produce non-
negligible oscillations in cAMP.

DISCUSSION

It has long been known that cAMP is an important poten-
tiator of glucose-stimulated insulin secretion, but only
recently has it been possible to measure the dynamics of
cAMP in 8 cells with high time resolution and learn that
the cAMP concentration oscillates. However, the experi-
mental record is equivocal as to the temporal relationship
between Ca®" and cAMP and the mechanism or mecha-
nisms of the cAMP oscillations. A previous model (32)
showed that cAMP could be out of phase with Ca®" if
the effects of Ca®>" on PDE were dominant and in phase
with Ca”" if the effects on AC were dominant. We have
built on that base and shown that the same principle holds
whether the variation in AC and PDE activity is the result
of variation in the maximal rates or the affinities to Ca>".
Whereas the former is more likely to explain the observa-
tion of in-phase oscillations in GLP-1, the latter is a pos-
sibility in accounting for different cell lines or mouse
strains.

The main motivation for this article, however, was obser-
vations of slow oscillations in cAMP in the presence of
glucose without GLP-1 or glucagon. These oscillations
have been reported to persist in conditions in which Ca®"
entry is inhibited or nonoscillatory (8,11,16). Although the
database is limited, the data available indicate that these
slow cAMP oscillations are in phase with ca’t. Thus, the
unifying theory that oscillations are in phase in the presence
of GLP-1 and out of phase otherwise (7,32,46) does not
extend to these more recent data.
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We have proposed here an alternative explanation, that
AC activity responds directly to glucose metabolism
because AMP inhibits AC, and not only indirectly through
the effects of metabolism on Ca®" (Fig. 7). Although ATP
influences AC as a substrate, AMP is present in much lower
concentrations than ATP, which makes it a more sensitive
metabolic signal. Relatively low concentration similarly
means that ADP plays a bigger role than ATP in regulating
K(ATP) channels during MOs, when glucose is high. The
potency of AMP is further enhanced because it is produced
by combining two ADP molecules, and hence its concentra-
tion is proportional at steady state to the square of ADP con-
centration (Eq. 7). It has been noted previously that this
makes AMP an appropriate messenger for AMP-dependent

A Fast Oscillations
Cal+

—) PDE
—>

EO

cAMP

v

AC

B Slow/Compound Oscillations
Ca2+
EO P PDE

TATP

MO =———y)

AMP

7
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FIGURE 7 Central hypothesis. Pathways for fast oscillations (A) and
slow or coumpound oscillations (B). Glucose activates glycolysis, which
may either be steady or oscillate. Calcium oscillations are driven by either
MOs or EOs or both. Calcium oscillations can lead to cAMP oscillations
through calcium-sensitive ACs and PDEs. We propose in addition that os-
cillations in AMP, an inhibitor of AC, also directly and independently drive
cAMP oscillations.
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kinase, which is a general integrator of the metabolic state of
cells (47).

To reproduce the observations of cAMP oscillations in the
absence of Ca®" oscillations (Figs. 1,2, and 3), it was neces-
sary to employ a model in which MOs do not require Ca*"
oscillations, as is the case with the DOM (23). With AC and
PDE added to this model, cAMP is in phase with Ca®* dur-
ing slow MOs. When MOs are suppressed, the effects of
Ca*" become manifest and generally concur with those in
the model of Fridlyand et al. (32). Though AMP oscillations
secondary to Ca®" oscillations have some effect, this is
smaller than the direct Ca>" effect.

During slow oscillations, large-amplitude oscillations of
both AMP and Ca”" are generated. If the effect of AMP on
cAMP is removed, large cAMP oscillations still occur, due
entirely to Ca>". These may be either in phase or out of
phase with Ca®", depending on the relative contributions
of AC and PDE. The direct effect of AMP on AC in this
case reduces the amplitude of cAMP oscillations by
opposing the action of Ca>", but it does not change the phase
relationships. However, the AMP effect is needed to get
cAMP oscillations without Ca>" oscillations. Although the
published experimental data match the model simulation in
that cAMP and Ca”" are in phase during slow oscillations,
one could envision a case where with the right affinities the
effect of Ca®* on PDE dominates the effect of Ca®" and
AMP on AC, so that cAMP and Ca®* would oscillate in anti-
phase during slow oscillations. This was demonstrated in
model simulations for the case of compound oscillations
in Fig. 5 B.

The model thus successfully accounts for the totality of
observations to date, and it also makes predictions for
further testing. The simulated experiment in Fig. 3 refines
the protocol of Fig. 3 in (8) by allowing comparison of
cAMP oscillations before termination with Dz and after
rescue with KCl-induced depolarization; the model predicts
that the amplitude would decrease, and that the rescued
cAMP oscillations should be in phase with rescued ATP os-
cillations. In the study by Merrins and colleagues (25),
NAD(P)H oscillations persisted in about one-third of islets
exposed to Dz, and KCl restored NAD(P)H oscillations in
around one-half of those where they had been terminated.
A sufficiently large and representative sample size is there-
fore needed when testing this prediction. The osbservation
of compound oscillations in cAMP would directly support
the main claim of the model, that cAMP oscillations are
controlled by distinct Ca®>" and metabolic mechanisms.
Conversely, failure to observe compound cAMP oscillations
in the presence of compound Ca*" oscillations would argue
against the model.

Finally, we suggest that cAMP oscillations in « cells, re-
ported by Tian et al. (16), are also driven by MOs that do not
require Ca®" oscillations, as their period is slow, like the
cAMP oscillations in § cells. The dependence of those os-
cillations on Ca*" oscillations and the phase relationship
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between cAMP and Ca”>" have not been measured yet in
« cells.

We have described multiple predictions that can be used
to test the model, but its validity also depends critically on
whether the oscillations in AMP are of sufficient magnitude
and the affinity of AC for AMP is sufficiently low for the
metabolic drive to be consequential. We have therefore un-
dertaken the sensitivity analysis in Fig. 6 to explore this
question. We found that the amplitude of the AMP-depen-
dent component of the cAMP oscillations is optimal if
AMP is comparable to the K, of AC, but it can still be sig-
nificant even if the K ,, is below the optimum. To our knowl-
edge, no measurements of AMP have been made in islets.
However, measurements of dynamic changes in the ATP
concentration in islets have been made using Perceval
(48), and they show that the ATP level declines during the
active phase of the burst when Ca®" is high and rises during
the silent phase when Ca”" is low. From this, one would pre-
dict that AMP levels rise during the active phase and decline
during the silent phase of the burst. Whether this is the case
is yet to be determined.

CONCLUSIONS

In conclusion, the existence of slow oscillations in cAMP in
G cells stimulated by glucose, as well as faster cAMP oscil-
lations, is consistent with the DOM for §-cell activity. These
data complement previous data supporting the model
(24,25,33,49). In addition to accounting for a wide range
of data, the model has implications for the organization of
insulin secretion. Since insulin is secreted when Ca®" is
elevated, and since cAMP enhances exocytosis, in-phase os-
cillations of cAMP and Ca”" in glucose-stimulated 3 cells
may be optimal for evoking insulin secretion. The cAMP-
elevating hormone GLP-1 would further enhance secretion
without disturbing the phase relationship. We suggest that
this beneficial arrangement arises from the coordination of
Ca*" and cAMP by MOs.

APPENDIX A: MODIFICATIONS TO THE DOM

We use the model in Watts et al. (42) but make one modification beyond the
addition of the cAMP equation. Whereas AMP was fixed for simplicity in
some previous versions of the DOM, we allow AMP to vary here. Total
adenosine, Ay, is taken to be 2500 uM and ATP is formed from mitochon-
dria according to

ATP = (0Jnt)/ (KnyaC + Jnyass) (A1)

and ADP and AMP are conserved:
ADP = (ATP/(2K.)) <\/13 - 1), (A2)
AMP = K,ADP*/ATP, (A3)
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where

D = 1—4K,(1 — Aw/ATP) (A4)

and K, = 2. The nucleotide translocator form J,, is defined as in Watts
et al. (42), as are the parameters 6 = 0.0733, kpyq = 0.00005 ms~ !, and
JhdeS = 0.00005 ,LLM/II]S.

We also adjust maximal conductance for the KATP channel, which
affects the voltage (V) equation,

Cm(il_‘; = - (Ik + Ica + Ikca + Ikatp)a

with

Ikalp = (1 - Dz)gkatpokﬂtp(v - VK) + ngkatp(v - VK)’
(A5)

where Dz is 1 when Dz is applied and 0 when it is not. As in previous
versions of the DOM, variation in g, and Jok is used to generate slow,
fast, and compound oscillations; see figure legends for values. Code may
be found in the Supporting Material or downloaded from http://www.
math.fsu.edu/~bertram/software/islet.

SUPPORTING MATERIAL

ODES computer codes are available at http://www.biophysj.org/biophys;j/
supplemental/S0006-3495(15)00607-4.
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