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ABSTRACT Cell coupling is important for the normal function of the b-cells of the pancreatic islet of Langerhans, which secrete
insulin in response to elevated plasma glucose. In the islets, electrical and metabolic communications are mediated by gap
junctions.Althoughelectrical coupling is believed toaccount for synchronization of the islets, the role andsignificanceof diffusion of
calcium and metabolites are not clear. To address these questions we analyze two different mathematical models of islet calcium
and electrical dynamics. To study diffusion of calcium, we use amodifiedMorris-Lecarmodel. Based on our analysis, we conclude
that intercellular diffusion of calcium is not necessary for islet synchronization, atmost supplementing electrical coupling.Metabolic
coupling is investigated with a recent mathematical model incorporating glycolytic oscillations. Bifurcation analysis of the coupled
system reveals several modes of behavior, depending on the relative strength of electrical and metabolic coupling. We find that
whereas electrical coupling always produces synchrony, metabolic coupling can abolish both oscillations and synchrony,
explaining some puzzling experimental observations.We suggest that thesemodes are generic features of square-wave bursters
and relaxation oscillators coupled through either the activation or recovery variable.

INTRODUCTION

An important control center in glucose homeostasis is the

insulin-secreting pancreatic b-cell, localized in the islets of

Langerhans. Insulin secretion is a complex multicellular

process, which relies on interactions between b-cells within

an islet as well as on the interactions between islets in the

pancreas. Under normal conditions, glucose stimulation

evokes well-synchronized oscillations of cytosolic Ca21

concentration ([Ca21]i) in the b-cells in an islet, which in

turn trigger pulses of insulin secretion (1–5). On the other

hand, in islets of ob/ob mice, desynchronization of the

glucose-induced [Ca21]i oscillations disturbs the regularity

of the corresponding pulses of insulin secretion (6). It has

been suggested (6) that such a mechanism could contribute

to the irregularity of insulin oscillations in diabetic patients

with Type II Diabetes mellitus (7). Thus, it is of interest to

gain a better understanding of the mechanisms underlying

the coordination of the pancreatic b-cell activity.

In the islets of Langerhans, gap junctions represent the

functional cellular connections that are responsible for

electrical and metabolic coupling (8–16). Intercellular com-

munication through gap junctions, formed by protein subunits

called connexins, plays an important role in synchronizing the

activity of the pancreatic b-cells and thus in maintaining the

normal physiological function of the pancreatic islets of

Langerhans. There is a great deal of experimental data

suggesting that connexins contribute to the control of cell

function both in vitro and in vivo (11,13,16–18).

The role of electrical coupling in aiding the propagation of

bursts of action potentials among coupled b-cells associated

with coordinated elevations in [Ca21]i and pulsatile insulin

secretion is well-established (9,10,14,16). The role of gap-

junctional diffusion of calcium, shown to be crucial for syn-

chronization in some nonexcitable cells such as hepatocytes

and pancreatic acinar cells (19,20), is not clear for b-cells,

however.

The extent of metabolic coupling and its influence on islet

cells coordination is similarly unclear. It has been verified

experimentally (14) that signaling molecules, such as

intermediate products of glycolysis, can also diffuse through

gap junctions in the islet cells of transgenic RIP-Cx32 mice

that show enhanced junctional conductance. Moreover, it

has been demonstrated (8) that signals generated in the early

steps of the glycolytic pathway, in particular glucose 6-

phosphate (G6P), can also propagate among islet cells.

In this article, we use mathematical modeling to study the

effects of different intercellular messengers on the behavior

of pancreatic b-cells diffusively coupled through gap junc-

tions. First, we analyze the effects of intercellular calcium

diffusion in a simple, Morris-Lecar-like b-cell model (21).

Surprisingly, the diffusion of calcium through gap junctions,

if too strong, can have a desynchronizing effect by promoting

oscillator death, a phenomenon first identified in coupled

chemical oscillators (22). Based on this result, we conclude

that calcium gap-junctional diffusion does not make an impor-

tant contribution to the normal function of pancreatic islets of

Langerhans.
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Next, we investigate the role that metabolic coupling plays

in regulating the oscillatory behavior of islet cells. Specif-

ically, we study the effects of gap-junctional diffusion of fruc-

tose 1-6-bisphosphate (FBP) and glucose 6-phosphate (G6P),

which are intermediate products of glycolysis. For that pur-

pose, we use a recent mathematical model that combines

pancreatic islet calcium and electrical dynamics with glycol-

ysis (23,24). Applying techniques from bifurcation theory,

we show that there are different possible modes of organized

collective behavior depending on the coupling messenger.

The glycolytic oscillator itself, as a part of this model, is of

relaxation type. Sufficiently strong coupling through the

activation variable (FBP) synchronizes glycolytic oscilla-

tions while coupling through the recovery variable (G6P)

kills the glycolytic oscillations. The death of the glycolytic

oscillations alters qualitatively the collective behavior of the

full ionic-metabolic system, providing a possible explanation

of some puzzling experimental observations in islets with

enhanced coupling (25) and when glucose is removed and re-

added (23).

In Models and Methods, we introduce the models and

explain their details, and in the section following, we present

the results. We begin by showing simulations of the effects

of coupling through the recovery variables or, in other

words, the variables that provide negative feedback. Then,

using bifurcation analysis, we study how strong coupling

through both activation and recovery variables affects the

collective behavior of these systems. In addition, we in-

vestigate the effects of heterogeneity among b-cells.

Although the models we consider and the questions we

address in this study refer to pancreatic b-cells, the results are

applicable to any system of relaxation oscillators coupled

through the activation or recovery variable. Such systems, for

example, include coupled chemical oscillators (22,26,27),

coupled systems of neurons or coupled genetic oscillators

(28). We conjecture that the oscillator death phenomenon is a

general feature of systems of relaxation oscillators coupled

through the recovery variable. Importantly, it is not the mol-

ecular identity of the coupling messenger that determines the

behavior but its dynamical role.

MODELS AND METHODS

Morris-Lecar-like b-cell model

We extend the original model of membrane potential for barnacle muscle

fiber, proposed by Morris and Lecar (21), to obtain the bursting dynamics of

b-cells. In this form, it is essentially equivalent to the original Chay-Keizer

model for b-cell bursting (29). We have chosen it as the simplest model that

can exhibit both bursting and oscillator death but have verified that a more

elaborate model (30) has the same response to Ca21 coupling.

The Morris-Lecar model is a two-variable model in which the variables

V and n represent the membrane potential and the fraction of open voltage-

gated K1 channels, respectively. The modified Morris-Lecar equations are

Cm

dVðiÞ

dt
¼ Iapp � ðIðiÞK 1 I

ðiÞ
KðATPÞ 1 I

ðiÞ
Ca 1 I

ðiÞ
KðCaÞ 1 I

ðiÞ
c Þ; (1)

dn
ðiÞ

dt
¼ n

ðiÞ
NðV

ðiÞÞ � n
ðiÞ

tnðVðiÞÞ
; (2)

dc
ðiÞ

dt
¼ fcytðJðiÞmem � J

ðiÞ
diffÞ; (3)

where the variables V and n have been augmented by the cytosolic calcium

concentration [Ca21]i, denoted c. The three dependent variables and all

expressions are indexed by the cell number, (i). The value Cm is the

membrane capacitance, and fcyt is the fraction of free to total cytosolic Ca21.

Values of all parameters used in the model simulations are given in Table 1.

The currents included in the model are

I
ðiÞ
K ðVðiÞ

; n
ðiÞÞ ¼ gKn

ðiÞðVðiÞ � VKÞ; (4)

I
ðiÞ
KðATPÞðV

ðiÞÞ ¼ gKðATPÞðVðiÞ � VKðATPÞÞ; (5)

IðiÞCaðV
ðiÞÞ ¼ gCam

ðiÞ
NðV

ðiÞÞðVðiÞ � VCaÞ; (6)

I
ðiÞ
KðCaÞðV

ðiÞ
; c

ðiÞÞ ¼ gKðCaÞ

11 ðKCa=c
ðiÞÞ

ðVðiÞ � VKÞ: (7)

The activation functions and the time constant for n are

m
ðiÞ
NðV

ðiÞÞ ¼ 0:5 11 tanh
V

ðiÞ � V1

V2

 ! !
; (8)

n
ðiÞ
NðV

ðiÞÞ ¼ 0:5 11 tanh
V

ðiÞ � V3

V4

 ! !
; (9)

tnðVðiÞÞ ¼ 1

ucosh
V

ðiÞ � V3

2V4

 !: (10)

The rate of change of the membrane potential (V) is given by a balance

equation (Eq. 1) for the ion currents involved in its dynamics. To the currents

originally included in this model we add a Ca21-sensitive potassium current,

IK(Ca), which is directly activated by Ca21 (7). As in other b-cell models, fast

spikes during the burst result from interaction between voltage-dependent

calcium and potassium currents ICa and IK given in Eqs. 6 and 4, re-

spectively. The slow modulation that drives the shifts between active and

silent phases is provided by the intracellular calcium concentration c, which

is a negative feedback variable acting on IK(Ca).

The rate of change of c is also given by a balance equation (Eq. 3). The

Ca21 flux across the plasma membrane J
ðiÞ
mem is given by the difference

between the Ca21 influx, represented by the voltage-gated calcium current,

and Ca21 efflux through the plasma membrane Ca21 pump,

J
ðiÞ
memðV

ðiÞ
; c

ðiÞÞ ¼ �ðaIðiÞCaðV
ðiÞÞ1 k

ðiÞ
PMCAc

ðiÞÞ; (11)

TABLE 1 Parameter values of the Morris-Lecar-like

b-cell model

k
ð1Þ
PMCA 0.15 ms�1 Iapp 0 pA

fcyt 0.001 f 0.035 ms�1

Cm 5300 fF gK(Ca) 2000 pS

VK �75 mV VK(ATP) �75 mV

VCa 25 mV gK 2700 pS

gK(ATP) 150 pS gCa 1000 pS

V1 �20 mV V2 24 mV

V3 �16 mV V4 11.2 mV

KCa 5.0 mM a 4.5 3 10�6 fA�1 mM ms�1
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where a converts current to flux, and k
ðiÞ
PMCA is the plasma membrane

Ca21 ATPase pump rate. In the case of two coupled cells we define

k
ð2Þ
PMCA ¼ gk

ð1Þ
PMCA to introduce heterogeneity between the cells.

Since we are interested in the effects of coupling through various

messengers, we incorporate both electrical and calcium coupling of the cells

by adding the following gap-junctional coupling terms to the equations for

V and c, which are Eqs. 1 and 2, respectively,

I
ðiÞ
c ðVðiÞÞ ¼ +

j2Gi

gc;VðVðiÞ � V
ðjÞÞ; (12)

J
ðiÞ
diffðc

ðiÞÞ ¼ +
j2Gi

gc;CaðcðiÞ � c
ðjÞÞ; (13)

where gc, V and gc, Ca are the coupling conductance and the gap-junctional

permeability for Ca21, and the sum is taken over the set Gi of nearest-

neighbor cells to which cell (i) is coupled. We are particularly interested in

how the ratio

d ¼ gc;V=gc;Ca (14)

of the coupling strengths through voltage and calcium affects the behavior

of the coupled system. The parameters d, gc, V and gc, Ca are varied in

the simulations and their values are given in the figure legends.

Glycolytic oscillator model

To study metabolic coupling, we consider a recent b-cell model proposed by

Bertram et al. (23), which incorporates a metabolic subsystem in addition to

the feedback by [Ca21]i onto Ca21-sensitive K1 channels. This enables the

model to produce very slow oscillations in [Ca21]i governed by glycolytic

oscillations. We first study only the glycolytic oscillator component, which

is based on an earlier model for glycolytic oscillations in muscle extracts

(31). This model is a classic example of a biochemical relaxation oscillator

in which the product, fructose 1-6-bisphosphate (FBP), is the activation

variable and the substrate, glucose 6-phosphate (G6P), is the recovery

variable. The positive feedback is due to FBP, which activates the allosteric

enzyme phosphofructokinase (PFK), and the negative feedback is due to

depletion of G6P. As in the Morris-Lecar b-cell model described above, the

cells are indexed by the cell number (i).

We consider a simplified version of this model, which includes equations

only for G6P and FBP,

dG6P
ðiÞ

dt
¼ lðRðiÞ

GK � R
ðiÞ
PFK � J

ðiÞ
G6PÞ; (15)

dFBP
ðiÞ

dt
¼ lðRðiÞ

PFK � 1

2
RðiÞ

GPDH � JðiÞFBPÞ; (16)

where l ¼ 0.005 is a parameter that converts milliseconds to seconds and

adjusts the timescale of the glycolytic oscillations to agree with experimental

observations. The value R
ðiÞ
GK is the constant glucokinase (GK) reaction rate.

We introduce heterogeneity by assuming different levels of GK activity in

the cells. The glyceraldehyde 3-P dehydrogenase (GPDH) reaction rate

R
ðiÞ
GPDH is given by the expression

R
ðiÞ
GPDH ¼ 0:2

ffiffiffiffiffiffiffiffiffiffiffiffi
FBP

ðiÞ

1mM

s
mMs

�1
: (17)

The PFK reaction rate, R
ðiÞ
PFK; includes the binding of activators (AMP and

FBP), an inhibitor (ATP), and the substrate fructose 6-phosphate (F6P ¼ 0.3

G6P). The function describing the reaction rate of PFK is rather complex and

is completely defined in Bertram et al. (23) and Pedersen et al. (24).

Similarly to the Morris-Lecar-like b-cell model, the gap-junctional

coupling terms are added to the equations for G6P and FBP, which are Eqs.

15 and 16, respectively, and take the form

J
ðiÞ
G6PðG6P

ðiÞÞ ¼ +
j2Gi

pG6PðG6P
ðiÞ � G6P

ðjÞÞ; (18)

J
ðiÞ
FBPðFBP

ðiÞÞ ¼ +
j2Gi

pFBPðFBP
ðiÞ � FBP

ðjÞÞ; (19)

where pG6P and pFBP are the gap-junctional permeabilities for G6P and FBP,

respectively, and the sum is taken over the set of cells Gi to which cell (i)

is coupled. In this case we consider again the nearest-neighbor coupling

scheme.

Computational methods

The model equations for the Morris-Lecar-like b-cell (Eqs. 1–3) and the

model equations for the glycolytic oscillator (Eqs. 15 and 16) in the case of

two coupled cells were solved numerically using the software package

XPPAUT (32). The bifurcation analysis was performed with AUTO 2000

(33). The model definition files used in the simulations can be downloaded

from http://lbm.niddk.nih.gov/sherman/.

RESULTS

Coupled Morris-Lecar-like b-cells

The Morris-Lecar-like b-cell model belongs to the class of

square-wave burster models. The effects of electrical cou-

pling in such models have been comprehensively investi-

gated (34–36). The most typical result is that the bursts

synchronize, but the spikes may not synchronize unless

the coupling is very strong. If the cells are heterogeneous,

stronger coupling is required to achieve synchrony. If the

cells are sufficiently different and the coupling strong enough,

the slow oscillations are still able to phase-lock nearly in-

phase, but the fast spiking oscillations die (35).

In this study we focus on the effects of coupling through

the recovery (negative feedback) variable in addition to

already present electrical coupling as well as on their relative

strengths, represented by the parameter d (Eq. 14). We avoid

the complex behaviors observed when the coupling is weak

by assuming that the electrical coupling is sufficiently strong,

so that the only stable spiking modes are the in-phase or

nearly in-phase, when the cells are identical or nonidentical,

respectively.

Calcium coupling can kill the bursting

The recovery variable in the Morris-Lecar-like b-cell model

is c. Although the electrical coupling among b-cells is well-

documented experimentally (9,10,14,16), the diffusion of

calcium through gap-junctions, feasible from the experi-

mental point of view (37), has not been addressed theoret-

ically.

In Fig. 1 we show two coupled Morris-Lecar-like b-cells

where one of the cells (dashed) has stronger Ca21 pumping

than the other (solid). Initially, the two cells are coupled only

through the membrane potential (0 # t # 100 s). The spikes

in Fig. 1 b are synchronized nearly in-phase with nearly

identical amplitude. The cytosolic Ca21 concentrations (Fig.

3436 Tsaneva-Atanasova et al.
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1 a) oscillate in phase, but, since the cells are nonidentical,

their amplitudes are different; the cell with stronger pumping

has lower [Ca21]i. Addition of calcium coupling (100 , t#
200 s) equalizes the amplitudes of the [Ca21]i oscillations

and leads to better synchronization of the voltage bursts. In

this case, diffusion of Ca21 through gap-junctions facilitates

synchronization of the coupled system. However, increasing

the coupling strength of Ca21 further (200 , t # 300 s)

results in the disappearance of the slow calcium oscillations

(Fig. 1 a) and splitting of the voltage solutions into two

levels, a high, spiking level, and a low, silent level (Fig. 1 b).

Thus, incorporation of sufficiently strong gap-junctional

diffusion of calcium in addition to electrical coupling kills

the slow component of the bursting voltage solution, leaving

only the fast spikes.

A physiological interpretation of this phenomenon can be

given as follows. The effect of diffusive Ca21 coupling is to

equalize the [Ca21]i, which provides negative feedback for

bursting. Since the Ca21 pumps are not identical, the cells

require different amounts of [Ca21]i to exhibit bursting.

Therefore, when the concentration of Ca21 in the two cells is

equalized the cells can no longer burst. Instead, the cell with

the stronger pump fires continuously at a depolarized level

because [Ca21]i is too low, whereas the other cell is re-

polarized because [Ca21]i is too high. In the next section we

will show that the cells do not need in fact to be hetero-

geneous. When the cells are identical, a symmetry-breaking

pitchfork bifurcation can also lead to a situation in which one

cell has too much [Ca21]i and the other too little.

Bifurcation analysis—identical cells

To understand why and under what circumstances intercel-

lular calcium diffusion can result in oscillator death, we

perform a bifurcation analysis of the Morris-Lecar-like

b-cell model (Eqs. 1–3). As mentioned above, the Morris-

Lecar-like b-cell model is a square-wave bursting model in

the range of parameter values that we have chosen for our

study. Because of the fast-slow nature of this type of system,

it is computationally challenging to construct numerically

bifurcation diagrams of the full system. However, we are

interested in how coupling through calcium affects the

behavior of the coupled system. Therefore we simplify the

full system by removing the fast spiking component. To

achieve that we set the fast voltage-gated K1 channels

activation variable n(i) ¼ n
ðiÞ
N; which allows us study only the

slow oscillatory behavior of the system. The reduced system

of Eqs. 1 and 3 is a coupled system of relaxation oscillators

where the voltage (V) can be regarded as the activation

variable and the [Ca21]i (c) as the recovery variable. Note

that this approach differs from the usual fast-slow analysis

used in previous studies of coupling (34–36), in which the

recovery variable was used as a bifurcation parameter.

We start with the single-cell bifurcation study, using the

plasma membrane calcium (PMCA) pump rate kPMCA as a

bifurcation parameter. This is a natural choice because

varying the PMCA pump rate takes the model through the

three experimentally observed modes. As the value of kPMCA

increases, the behavior of a single b-cell changes from silent

to bursting. Further increase in PMCA pump rate brings the

cell to a continuous firing regime. This behavior is summa-

rized in Fig. 2 a, which shows that there is range of (kPMCA)

values where the steady state loses stability, between the two

Hopf bifurcation points labeled HBbs. The Hopf bifurcation

points give rise to a branch of periodic orbits, which rises

nearly vertically and is initially unstable but becomes stable

at a saddle-node-of-periodics (SNP) turning point. The stable

(nearly horizontal) portion corresponds to the slow compo-

nent of the bursting solution of the full system. For values of

the parameter (kPMCA) that are on the left side of the leftmost

Hopf bifurcation point the system is silent. To the right of the

rightmost Hopf bifurcation point the reduced system goes to

a high-voltage steady state, which means that the full system

would fire continuously.

We continue with a study of the coupled system in the case

of two identical cells, coupled through both voltage and

calcium. When the cells are identical, the coupled system is

symmetric, and identical behavior of the two cells is always a

solution, though not necessarily stable. Indeed, coupling

through calcium may cause the original symmetry of the

system to break through a subcritical pitchfork bifurcation of

the homogeneous steady state, labeled BP in Fig. 2 b. As a

result, the homogeneous (symmetric) steady-state branch

becomes unstable and splits into two additional branches,

which gain stability through Hopf bifurcations denoted by

FIGURE 1 Simulations of Morris-Lecar-like b-cell model with two

heterogeneous cells (k
ð1Þ
PMCA ¼ 0:15 s�1; k

ð2Þ
PMCA ¼ 0:18 s�1Þ: ðaÞ½Ca21�i so-

lutions. (b) Voltage solutions.
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HBss. The homogeneous steady state in Fig. 2 b is the same

as the steady state for a single cell (Fig. 2 a). The periodic

branch (not shown in Fig. 2 b but the same as in Fig. 2 a) that

connects the two Hopf bifurcation points (HBbs), which are

detected at the same parameter (kPMCA) values in both cases,

corresponds to synchronous in-phase bursting solutions of

the coupled full system (Eqs. 1–3). The Hopf bifurcation

points HBss in Fig. 2 b give rise to additional branches of

periodic solutions, but these are unstable and are therefore

omitted for clarity. Note that between the two Hopf

bifurcation points HBbs the coupled system is bistable, i.e.,

in the corresponding parameter range stable slow oscillations

(bursting solutions in the full system) coexist with stable

nonhomogeneous steady-state solutions that result from the

pitchfork bifurcation BP.

Oscillator death via a pitchfork bifurcation has previously

been described and analyzed by Bar-Eli (22) in a system of

coupled chemical oscillators, the Brusselator. This form of

oscillator death differs from that in a similar bursting model

(35) mentioned above, in which the fast spikes disappear due

to heterogeneity and strong electrical coupling and only the

slow oscillations persist. In contrast, the effect of diffusive

Ca21 coupling is to destroy the slow calcium oscillations and

hence the slow component in the bursting voltage solution,

while the fast oscillations persist. Moreover heterogeneity,

which is necessary for the existence of oscillator death due to

electrical coupling, is not required in the case of oscillator

death resulting from calcium coupling. We will use the abbre-

viations PFOD to denote oscillator death due to pitchfork

bifurcations and HBOD to denote oscillator death involving

dynamical transitions through Hopf bifurcations.

Since we saw in Fig. 1 that a little coupling through

calcium enhances synchrony, but a lot prevents oscillations,

we next investigate how oscillator death depends on the

strength of coupling through voltage and calcium. In par-

ticular, we continue the Hopf bifurcation points HBbs, which

give rise to a branch of synchronized bursting solutions, and

the Hopf bifurcation points HBss, where the nonhomoge-

neous steady states gain stability (Fig. 2 c) in two parameters,

the PMCA pump rate (kPMCA) and the ratio (d¼ gc, V/gc, Ca),

of the coupling strengths through voltage and calcium. Fig.

2 c shows that although there is bistability between the burst-

ing and steady-state solutions, the parameter region where

the nonhomogeneous steady-state solution is stable is bigger

than the region corresponding to stable bursting solutions.

The nonhomogeneous steady state is stable only for pa-

rameter values below the curve labeled HBss in Fig. 2 c. This

means that oscillator death occurs only if gc, V is ,;100

times as large as gc, Ca. This may explain why such behavior

has not been observed experimentally: unless the calcium

coupling is sufficiently strong compared to the electrical

coupling, oscillator death due to intercellular calcium dif-

fusion would never be encountered.

Fig. 2, b and c, imply that brief perturbations can switch

the system between the synchronous oscillatory and the

PFOD steady state. A typical example for kPMCA ¼ 0.15, gc,

Ca ¼ 0.5, and d ¼ 10 is shown in Fig. 3, where brief current

pulses of opposite polarity change the behavior from a syn-

chronous bursting solution to a stable nonhomogeneous steady

state.

To show that the form of oscillator death in our system is

the same as that studied by Bar-Eli (22) and Marek and

Schreiber (38), we choose a particular value of the parameter

kPMCA ¼ 0.15 and study the collective behavior of two

identical b-cells as the coupling strength through calcium

(gc, Ca) is varied (Fig. 4 a). Similar to those studies (e.g., Fig.

FIGURE 2 Bifurcation diagrams of the Morris-Lecar-like b-cell model.

(a) Bifurcation diagram in the case of a single cell, showing the maximum of

the periodic orbits as a function of kPMCA; (b) bifurcation diagram in the case

of two identical cells, showing the nonhomogeneous steady-state solutions

as a function of kPMCA; periodic branch omitted for clarity. (c) Two-

parameter bifurcation diagram in (kPMCA, d)-space for fixed gc,Ca ¼ 0.5; the

cross-shaded region indicates bistability; plotted on logarithmic axis scale.

(HB, Hopf bifurcation; BP, symmetry-breaking (pitchfork) point; LP, saddle

node; SNP, saddle node of periodics.) The broken lines denote instability.
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1 in Bar-Eli (22)), we find that in our system the homoge-

neous steady state is unstable. For a range of gc,Ca values, a

subcritical pitchfork bifurcation of the homogeneous steady

state gives rise to a pair of nonhomogeneous steady-state

solutions, which gain stability through Hopf bifurcation

points labeled HBss in Fig. 4 a. Specifically, in the case of

d ¼ 10, for very small (&10�4) or for large (*10) values of

gc, Ca the coupled system has only a stable bursting solution,

while for 10�4 , gc, Ca , 10 the coupled system is bistable,

i.e., the stable bursting solution coexists with the stable

nonhomogeneous steady-state solutions.

The behavior of the system depends on the strength of the

electrical coupling as well. Similarly to Fig. 2 c, the two-

parameter (gc,Ca, d) bifurcation diagram of the Hopf bifur-

cation points HBss in Fig. 4 b indicates that oscillator death

occurs for values of d below the curve HBss, i.e., only if the

ratio d ¼ gc, V/gc,Ca is not too big.

Bifurcation analysis—nonidentical cells

Although the assumption that the cells are identical facili-

tates the analysis and is helpful in capturing the basic

bifurcation structure of the coupled system, the case of

nonidentical cells is closer to reality. Therefore, we introduce

heterogeneity in our system of two coupled cells by defining

the ratio g ¼ k
ð2Þ
PMCA=k

ð1Þ
PMCA: The bifurcation diagram of the

coupled system for a fixed degree of heterogeneity g ¼ 0.2,

using k
ð1Þ
PMCA as a bifurcation parameter, is displayed in Fig. 5,

a and b. Since the cells are nonidentical, the steady state is

not symmetric: the symmetric steady state seen when the

cells were identical (Fig. 2 b) here breaks into two pairs of

asymmetric steady-state solutions, given in thin and thick

solid lines in Fig. 5, a and b. The pitchfork bifurcation

becomes a saddle-node bifurcation and the nonhomogeneous

steady states gain stability through Hopf bifurcation points

labeled HBss. For clarity, in Fig. 5, a and b, the periodic

branch, which connects the Hopf bifurcation points HBbs and

corresponds to stable, nearly in-phase bursting solutions of

the full system (Eqs. 1–3), as well as the unstable branches of

periodic orbits that emanate from the points HBss, are not

shown. Although the symmetry of the coupled system is lost

in the case of nonidentical cells, Fig. 5, a and b, illustrate

that, regarding the phenomenon of oscillator death, the behav-

iors in both cases are similar. Hence, the case of nonidentical

cells can be treated as a perturbation of the case of identical

cells that preserves the oscillator death phenomenon.

In Fig. 5 c we continue in two parameters k
ð1Þ
PMCA and g the

loci of the Hopf bifurcation points HBbs that give rise to a

branch of synchronized, nearly in-phase bursting solutions

FIGURE 3 Morris-Lecar-like b-cell model reset from nonoscillating to

oscillating in the case of identical cells with parameter values taken from the

region of bistability (k
ðiÞ
PMCA ¼ 0:15 s�1); at t ¼ 50 s, pulses of equal

amplitude but opposite polarity are applied for 100 ms. (a) [Ca21]i; (b)

membrane potential.

FIGURE 4 Bifurcation diagrams of the Morris-Lecar b-cell model in the

case of identical cells, with parameter values taken from the region of

bistability (k
ðiÞ
PMCA ¼ 0:15 s�1; d ¼ 10). (a) Bifurcation diagram in the case

of two identical cells, showing the nonhomogeneous steady-state solutions

as a function of gc, Ca. (b) Locus of the pair of Hopf bifurcation points, HBss

in the two-parameter (gc, Ca, d)-space. (HB, Hopf bifurcation; BP, symmetry-

breaking (pitchfork) point; LP, saddle node.) The broken lines denote

instability.
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and the loci of the Hopf bifurcation points HBss, where the

nonhomogeneous steady states gain stability. The lines

labeled HBss outline the region in the (k
ð1Þ
PMCA; g) parameter

space of stable nonhomogeneous steady-state solutions,

whereas the lines labeled HBbs outline the region of stable,

nearly synchronous bursting solutions. Fig. 5 c illustrates

that, for the heterogeneous case as well, the coupled system

is bistable. An example of behavior in that regime is shown

in Fig. 1, a and b. Fig. 5 c also demonstrates that the range of

parameter k
ð1Þ
PMCA values where the nonhomogeneous steady

state is stable is approximately twice as big as the range

where the system is bistable. Interestingly, the other type of

oscillator death (HBOD) (35,36) can be found in Fig. 5 c
when the degree of heterogeneity g is very large. We see that

all the branches represented in this figure come closer

together and eventually coincide as g increases. This leads

to disappearance of the HBbs and HBss points, and hence in

this case the dynamics of the coupled system is represented

by a single stable steady state.

Coupled glycolytic oscillators

The glycolytic oscillator model, described by Eqs. 15 and 16,

is characterized by a gradual buildup of the glucokinase

(GK) product, glucose 6-phosphate (G6P), which is then

discharged as the concentration of the PFK product, fructose

1-6-bisphosphate (FBP), rises (Fig. 6 a). Therefore, similarly

to the reduced Morris-Lecar b-cell model (Eqs. 1 and 3), it is

of relaxation type, where FBP is the activation variable and

FIGURE 5 (a,b) Bifurcation diagrams of the Morris-Lecar b-cell model

in the case of nonidentical cells (g ¼ 0.2) showing the nonhomogeneous

steady-state solutions as a function of k
ð1Þ
PMCA: (c) Loci of the Hopf bifurcation

points of the Morris-Lecar b-cell model in the case of nonidentical cells in

the two parameter (k
ð1Þ
PMCA; g)-space. (HB, Hopf bifurcation; LP, saddle

node.) The broken lines denote instability.

FIGURE 6 (a) Simulations of the glycolytic subsystem in model of

Bertram et al. (23) for a fixed level of stimulation RGK ¼ 0.27s�1. (b)

Bifurcation diagram of the above glycolytic subsystem showing the

maximum and minimum of the periodic orbits as well as the nonhomoge-

neous steady-state solutions as a function of RGK. (HB, Hopf bifurcation;

BP, symmetry-breaking (pitchfork) point; LP, saddle node; SNP, saddle

node of periodics.) The broken lines denote instability.
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G6P is the recovery variable. We then expect to detect

oscillator death of the PFOD type (22,38) in a system of

glycolytic oscillators coupled through G6P. Indeed, as

shown in Fig. 6 b, the bifurcation diagram for FBP of two

coupled identical glycolytic oscillators has the same basic

structure as the corresponding bifurcation diagram (Fig. 2 b)

of two coupled Morris-Lecar b-cells. In Fig. 6 b we have

used the rate of GK (RGK), which reflects the level of glucose

stimulation, as a bifurcation parameter. The homogeneous

(symmetric) steady state splits into two nonhomogeneous

steady states through a pitchfork bifurcation, labeled BP in

Fig. 6 b. There are also two Hopf bifurcation points (HBos)

connected by a branch of stable periodic orbits, which cor-

respond to synchronous (in-phase) oscillations in FBP con-

centration. Analogously, the nonhomogeneous steady-state

branches gain stability through Hopf bifurcation points

(HBss). These nonhomogeneous stable steady states corre-

spond to PFOD.

In the case of coupled glycolytic oscillators, the existence

and stability of this phenomenon depends again on the ratio

between the coupling strengths through FBP (pFBP) and G6P

(pG6P). In particular PFOD occurs as long as pFBP is not

�pG6P and pFBP # 0.01 s�1 (computations not shown).

Moreover, similar to Fig. 2 c and Fig. 4 b for coupled Morris-

Lecar b-cells, in the case of coupled glycolytic oscillators the

region in the parameter space where stable, nonhomoge-

neous steady-state solutions exist increases (not shown)

when the coupling strength for the recovery variable in-

creases compared to the coupling strength for the activation

variable (i.e., when d decreases). Finally, in the case of

coupled heterogeneous glycolytic oscillators as well as in the

case of more than two coupled cells we expect behavior simi-

lar to that of the Morris-Lecar-like b-cell model.

A biochemical interpretation of PFOD for glycolytic

oscillators similar to that for the electrical oscillators can

be given as follows. Two glycolytic oscillators that require

different amounts of the substrate G6P to produce FBP

oscillations will stabilize when driven by coupling through

G6P to equalize the levels of the substrate. They settle into a

steady state where one of them has high and the other low

FBP. For the former, the concentration of the substrate G6P

is more than the maximum allowable for oscillations, and for

the latter, it is below the minimum for oscillations.

Combining electrical and metabolic oscillators

The Morris-Lecar b-cell model, although very useful as a

theoretical tool for studying the collective behavior of

coupled cells, does not take into account many of the mech-

anisms that influence the dynamics of pancreatic islets. It

reproduces the fast electrical activity (,60 s) of this cell

type, but cannot simulate very slow as well as compound

(mixed) bursting. Moreover, pulsatile insulin secretion has a

period of 2–5 min (7,18), which is comparable to the period

of slow or compound electrical bursting and [Ca21]i

oscillations. It has been proposed (23,39,40) that metabolic

oscillations, in particular glycolytic, underlie the slow

oscillations in [Ca21]i. There is experimental evidence for

glycolytic oscillations in single islets of Langerhans (40–43).

To study the effects of metabolic coupling on the slow

dynamics of pancreatic islets, we use a recent model (23) that

incorporates the glycolytic oscillator discussed in the

previous section. Complete model details as well as the

parameter values can be found in Bertram et al. (23). This

model is capable of reproducing a wide range of oscillation

frequencies depending on the parameter regimes. In the

parameter regimes where glycolysis oscillates, electrical

bursting and the concomitant oscillations in [Ca21]i result

from the combined influence of two independent but con-

nected oscillators—fast electrical and slow glycolytic. In the

simulations below, we examine electrical coupling and

metabolic coupling through both FBP and G6P. We do not

consider intercellular calcium diffusion because there are no

experimental observations of the oscillator death phenome-

non due to Ca21 coupling, which we discussed in the pre-

vious sections.

The first example (Fig. 7) illustrates the behavior of two

uncoupled nonidentical b-cells (R
ð1Þ
GK ¼ 0:25 and R

ð2Þ
GK ¼ 0:3;

representing different levels of sensitivity to glucose. For this

choice of parameters, interaction of the electrical and

glycolytic oscillators within each of the coupled cells results

in compound oscillations because the electrical oscillations

are much faster than the glycolytic ones (Fig. 7 a). Cell 2

(dashed) has slightly higher frequency than Cell 1 (solid). If

the cells are only electrically coupled, their membrane po-

tentials and [Ca21]i synchronize, but the metabolic oscilla-

tions do not synchronize, resulting in complex aperiodic

behavior (not shown). (In principle, electrical coupling can

synchronize even the metabolic oscillations due to the effects

of Ca21 on mitochondrial ATP production, and hence in-

directly on PFK (24), but with the parameters used here the

effect is weak and only works if the cells are identical or

nearly so.) Addition of coupling through FBP, on the other

hand, strongly synchronizes the glycolytic oscillations as

well as the slow oscillations in [Ca21]i and voltage (Fig. 7 b).

Finally, including gap-junctional diffusion of G6P (Fig. 7 c),

we provoke oscillator death as predicted by the analysis in

the previous section (Fig. 6 b).

In this case, however, oscillator death does not result in

stabilization of the whole system. Although the glycolytic

oscillations are abolished, the electrical/[Ca21]i oscillations

persist (Fig. 7 c), and are well synchronized due to electrical

coupling. In other words, increase in the gap-junctional

permeability transforms slow voltage/calcium oscillations

into fast oscillations. In fact, there is experimental evidence

(25) that overexpression of gap-junctional connexins Cx36

and Cx43 converts slow voltage and calcium oscillations

(period ;5 min) into fast ones (period ,1 min). In those

experiments, the gap-junctional conductance was measured

to increase after overexpression, which, according to our
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simulations, would not itself convert slow oscillations to fast

oscillations. We hypothesize that the conversion was instead

due to increase in the intercellular diffusion of G6P.

In the simulation of Fig. 7 c, the system is actually bi-

stable, so annihilation of the slow oscillation depends on the

initial conditions. We exploit this to simulate another ex-

perimental observation, conversion of slow to fast oscilla-

tions by removal and re-addition of glucose (Fig. 4 in (23)).

In that article, it was suggested that the conversion was due

to intrinsic bistability in the glycolytic oscillator subsystem

within each cell. Here we show an alternative scenario—that

bistability results from coupling through G6P.

PFOD is favored by heterogeneity, so we accentuated the

difference in R
ðiÞ
GK values. (Both cells are still compound

bursters, but the frequencies are more discrepant than in

Fig. 7.) Fig. 8 a begins with synchronized compound voltage

and calcium oscillations, here due to coupling through G6P

and voltage, but not FBP, which is also expected to favor

PFOD. (Note that coupling through FBP is not needed to

synchronize the metabolic oscillations if coupling through

G6P is present.) At t ¼ 15 min, removal of glucose is

simulated by reducing R
ðiÞ
GK by 80% and setting coupling to 0,

as coupling has been shown to increase with glucose (44). At

t ¼ 25 min, re-addition of glucose is simulated by restoring

R
ðiÞ
GK and coupling. The cells now go into the PFOD solution.

In summary, Figs. 7 and 8 show that coupling through

membrane potential may not be sufficient to synchronize

slow, metabolically driven oscillations in membrane poten-

tial and [Ca21]i. Coupling through either of the metabolic

variables, FBP or G6P, or both, robustly synchronizes the

slow oscillations. Coupling through G6P, but not coupling

through FBP, can kill the slow oscillations.

DISCUSSION

As a representative of the endocrine cell family, the

pancreatic b-cell expresses the connexin 43 (Cx43) isoform

of the connexin channel family (13,15). Recent experimental

evidence indicates that connexin 36 (Cx36) is coexpressed

in these cells (15). It has been shown (12,15,16) that Cx36 is

directly involved in the synchronization of glucose-induced

FIGURE 8 Simulations of the model of Bertram et al. (23) for two

coupled heterogeneous cells. Parameters as in Fig. 7 except: R
ð1Þ
GK ¼ 0:15 s�1

(dashed), R
ð2Þ
GK ¼ 0:3 s�1 (solid), pFBP ¼ 0, and pG6P ¼ 0.0025 ms�1. (a)

Cytosolic Ca21; (b) FBP. Initially the cells synchronize at a slow oscillation.

At t ¼ 15 min, glucose removal is simulated by decreasing R
ðiÞ
GK by 80%

and setting coupling to 0. Glucose is re-added and coupling restored at

t ¼ 25 min. The cells now go to the oscillator death solution. (Compare

Fig. 4 in Bertram et al. (23).)

FIGURE 7 Simulations of the model of Bertram et al. (23) for two

coupled heterogeneous cells. R
ð1Þ
GK ¼ 0.2 s�1 (solid); R

ð2Þ
GK ¼ 0.25 s�1

(dashed); g
ðiÞ
KðATPÞ ¼ 25 nS; g

ðiÞ
KðCaÞ ¼ 700 pS; and r(i) ¼ 1.0. (a) When

uncoupled, both cells are compound bursters with slightly different

frequencies. (b) When coupled via membrane potential (gc, V ¼ 75 pS)

and FBP (pFBP ¼ 0.001 ms�1), the electrical and metabolic oscillations

synchronize. (c) When coupled as well by G6P (pG6P ¼ 0.01 ms�1), the slow

oscillations are abolished, leaving fast, synchronized Ca21 oscillations.
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Ca21 oscillations and insulin secretion in pancreatic islets.

Therefore, the properties of this channel in terms of

permeability to specific signaling ions and molecules will

determine the overall behavior of an islet where thousands of

b-cells are coupled together. Unfortunately, there are limited

experimental studies and many possible intercellular mes-

sengers that could diffuse through gap junctions and thus

affect b-cell behavior. We have used mathematical modeling

to study the effects of diffusion of several intercellular

messengers. We do not focus on electrical coupling since it

has already been studied extensively both experimentally

(9,10,14,16) and theoretically (34–36). In this article, we

instead investigate how the exchange of other intercellular

signals influences a system of coupled b-cells, assuming the

presence of electrical coupling. In particular we have

addressed diffusive coupling of calcium and the glycolytic

metabolites FBP and G6P through gap-junctions and their

effects on b-cell dynamics. Furthermore, we have shown

how metabolic communication could account for experi-

mental results that cannot be easily explained solely by

electrical coupling.

Diffusive calcium coupling

Calcium gap-junctional diffusion has been shown (19,20) to

play an important role in synchronization of calcium re-

sponses in coupled hepatocytes and pancreatic acinar cells.

However, our analysis demonstrates that gap-junctional

diffusion of calcium, if close in magnitude to the voltage-

coupling strength, can kill the slow component in the burst-

ing electrical activity of coupled b-cells (Fig. 1). This effect

is a manifestation of the oscillator death phenomenon

described by Bar-Eli (22). This form of oscillator death is

due to a symmetry-breaking pitchfork bifurcation, which gen-

erates new asymmetric steady-state solutions that compete

with or replace the synchronous oscillatory solution (Fig. 2).

Thus, substantial diffusion of calcium through gap-

junctions appears to have a negative effect on the electrical

bursting as well as oscillatory Ca21 dynamics. Since such an

effect has not been encountered experimentally, it might be

that the electrical coupling is sufficiently strong compared to

the calcium coupling to prevent oscillator death. Indeed, it

has been reported (45) that in smooth muscle cells, for

instance, voltage coupling is orders-of-magnitude stronger

than diffusion of Ca21 through gap-junctions. Another ex-

ample are the heart cells where Ca21 waves can be prop-

agated through both mechanisms—either only through

diffusion of calcium or accompanied by action potentials

(46). In the former case, the wave speed reported experi-

mentally is ;30 mM/s compared to �120–150 mM/s in the

latter case, which is 4–5 times higher, indicating that the

effective diffusion coefficient for membrane potential is at

least 1–2 orders-of-magnitude larger than for calcium. The

relative contributions of cytoplasmic diffusion and gap-

junctional permeability would be different in islets, which

have different geometrical characteristics. Although the

electrical space constant in pancreatic islets has been cal-

culated to be�90mM (44), there have been no direct measure-

ments of Ca21 diffusion coefficient or wave propagation

velocity. Thus, it is a matter for future experimental work to

confirm or reject the model prediction.

Further possible explanation of such a difference between

the strengths of calcium and electrical coupling could be the

selectivity of the gap-junctional channels for particular ions

and molecules reported in Goldberg et al. (47,48). That is,

Cx36, which preferentially connects b-cells, might disfavor

the intercellular exchange of calcium and thus preserve the

normal function of the coupled b-cells by preventing os-

cillator death. We note that Serre-Beinier et al. (13) showed

reduction of gap-junctional calcium coupling in the presence

of increased levels of [Ca21]i. In any case, the b-cell must

possess a sufficient set of mechanisms to prevent oscillator

death. However, a small degree of calcium coupling could

contribute to synchronizing the Ca21 oscillations, especially

if the cells are heterogeneous (Fig. 1 a).

Metabolic coupling

Although acknowledged as possible (7,8,12,14,15), the

effects of metabolic coupling on the behavior of pancreatic

b-cells have not been experimentally investigated. Never-

theless, Kohen et al. (8) have demonstrated transfer of

glycolytic intermediates, specifically G6P, between pancre-

atic islet cells. In addition, Quesada et al. (14) have shown

that molecules of molecular weight 376.320 and electrical

charge and volume similar to those of fluorescent carboxy-

fluorescein (CF) cannot permeate Cx36 channels. The latter

finding is consistent with the ability of G6P to pass through

the gap-junctions connecting islet cells since the molecular

weight of G6P is only 257.113, considerably smaller than

that of CF. However, FBP has a molecular weight of

340.117, which is comparable to that of CF. This suggests

that diffusion of FBP may well be significantly smaller in

magnitude than that of G6P. These experimental data also

suggest that gap-junctional diffusion of ADP or ATP among

pancreatic b-cells is unlikely, considering their molecular

weights of 427.204 and 507.183, respectively. All of the

above is also consistent with the experimental evidence for

selective exchange of metabolites through gap-junctions

built up from different connexins reported by Goldberg et al.

(47,48).

We have shown that while gap-junctional diffusion of

FBP synchronizes the glycolytic oscillations, diffusion of

G6P through gap-junctions promotes oscillator death, pro-

vided that it is sufficiently strong compared to coupling

through voltage and FBP (Fig. 7). Given the differences in

the molecular weights of the two molecules and the per-

meability properties of Cx36 channels (14), it is plausible

that if islet cells are strongly coupled metabolically, then the

effect will be death of the glycolytic oscillations. Furthermore,
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there is experimental evidence (14) that even though under

normal physiological conditions electrical coupling of native

islet cells is more extensive than dye coupling, molecules

smaller than CF freely diffuse through gap-junctions when

junctional permeability is enhanced.

Combining the experimental data discussed above with

our theoretical results, we are able to offer an explanation

(Fig. 7) of recent experimental observations of the effect of

overexpression of Cx36 or Cx43 in mouse pancreatic islets

(25). In those experiments, increase in the gap-junctional

conductance transformed slow (.2 min) bursts of membrane

potential/oscillations in calcium into fast (,60 s) electrical/

calcium activity. Assuming that the slow oscillations are

governed by oscillations in glycolysis, we hypothesize that

enhancement of gap-junctional permeability leads to sub-

stantial diffusion of G6P through gap-junctions and kills

the glycolytic oscillations, leaving only the fast electrical

activity (Fig. 8). We have found no support in the sim-

ulations (not shown) for the alternate hypothesis that in-

creased electrical coupling alone could eliminate the slow

bursting component. There could, of course, be other reasons

that we have not explored for the increase in oscillation fre-

quency.

Coupling via diffusion of G6P, like coupling via Ca21,

makes the system bistable, in this case between fast, purely

electrical oscillations, and slow, combined electrical/glyco-

lytic oscillations (Fig. 8). This offers an alternative expla-

nation for the conversion between fast and slow oscillations

by removal and re-addition of glucose previously described

in Fig. 4 in Bertram et al. (23). Unlike coupling via Ca21,

however, we would not expect to be able to reset the system

by brief ionic perturbations; the metabolic variables would

have to be perturbed. More generally, the occurrence of fast

versus slow oscillations in islets may depend on whether the

system lies in the basin of attraction of the oscillator death

solution or not, a previously unsuspected explanation for this

much-studied issue. Variation in intrinsic parameters, such

as rates of glycolysis and channel conductances, likely also

contributes, as previously discussed (23).

The above phenomena have been illustrated by simula-

tions of two cells. Pancreatic islets, however, contains hun-

dreds or thousands of b-cells. Our computations with four

cells of the Morris-Lecar-like model (not shown) indicate

that the range of parameters in which the system of coupled

cells may become stable is larger than for two cells. This is

consistent with the oscillator death (PFOD) behavior of

coupled chemical oscillators previously reported by Bar-Eli

(22), who found that the basin of attraction of the oscillator

death solution increased with population size. We thus

expect that the larger the number of coupled cells, the higher

the probability that the coupled system would stabilize. We

have confirmed that the phenomena of Figs. 7 and 8 occur

with larger populations (125 cells) and indeed appear to be

more robust, but systematic study of the effects of population

size is left for future work.

Comparison with other systems

Oscillator death resulting from a pitchfork bifurcation

(PFOD) was discovered in a coupled system of chemical

oscillators (22). In this study we demonstrate this phenom-

enon in a Morris-Lecar-like b-cell model, which is a model

of Hodgkin-Huxley type (Figs. 2 and 4). Moreover, we

identify the coupling through the recovery variable (calcium)

as the cause for the occurrence of this phenomenon. The

Hodgkin-Huxley formalism is widely applied in modeling

excitable systems, and our results indicate that PFOD of the

oscillations in such systems will occur if these cells are

coupled through the recovery (negative feedback) variable

and the ratio of the electrical coupling strength to the

recovery variable coupling strength is not too big. For ex-

ample, the Morris-Lecar-like b-cell can be converted to a

model of a neuron with Ca21-dependent adaptation by

increasing the time constant of the voltage-dependent K1

current (e.g., by decreasing f). Such a system also exhibits

PFOD when Ca21 is allowed to diffuse.

In contrast, in models of calcium dynamics of electrically

nonexcitable cells, such as hepatocytes and pancreatic acinar

cells (19,20), Ca21 plays an important role in synchroniza-

tion. The main difference between the two classes of models

is the dynamical role of Ca21. In the former case, Ca21 is the

activation variable, whereas in the latter case, Ca21 provides

negative feedback, and thus plays the role of recovery

variable. We have shown that sufficiently strong coupling

through the activation variable produces synchrony while cou-

pling through the recovery variable can provoke PFOD in

addition to synchrony (Figs. 1–5). Similarly, for the glycol-

ytic oscillator model, coupling through the activation variable

FBP results in synchrony, whereas coupling through the

recovery variable G6P can result in oscillator death (Figs. 6–

8). Thus, PFOD is a consequence of the dynamical role of the

recovery variable, which provides negative feedback for

oscillations in the activation variable, rather than its biolog-

ical nature per se.

Other forms of oscillator death

PFOD must be distinguished from a different type of

oscillator death that involves stabilization of the steady state

due to disappearance of Hopf bifurcation (HBOD) as a result

of a great degree of heterogeneity in the coupled system (Fig.

5 c). In contrast, PFOD does not require heterogeneity; it is a

property of the symmetric system in the idealized case when

the cells are assumed to be identical (Fig. 2). Indeed, it is the

breaking of the symmetry that kills the oscillation by in-

troducing a new pair of stable steady states. PFOD does,

however, persist in the presence of heterogeneity (Fig. 5).

The type of oscillator death reported in (35) was an example

of HBOD in which the fast spikes within the active phase of

a burst disappear and therefore the coupled system of two

heterogeneous b-cells exhibits relaxation oscillations. In
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PFOD it is the slow oscillations that die, while the fast

oscillations are preserved.

Another scenario for oscillator death has been reported,

based on anti-phase periodic orbits that end in infinite-period

bifurcation and give way to an asymmetric steady state

(26,27). Similar to these studies, we have also found anti-

phase periodic solutions in the Morris-Lecar model when the

coupling strength is weak and upon increasing the stiffness

parameter f to 0.1 instead of 0.001. However, in the cases we

focus on in this article, they are unstable or do not exist.

Interestingly, our numerical computations with the Morris-

Lecar-like b-cell model reveal that, when present, the anti-

phase periodic orbits terminate by going heteroclinic to the

nonhomogeneous steady-state solutions, which arise through

pitchfork bifurcation of the symmetric steady state, as the cou-

pling strength increases. Thus, oscillator death via pitchfork

bifurcation of a steady state and via antiphase oscillations

appear to be related, but the exact relationship is left as an

open question for future investigation.

Predictions

Our study enables us to make two major predictions about

the dynamical effects of diffusive cell coupling via gap-

junctions on the collective behavior of coupled b-cells:

Prediction 1. Calcium either does not diffuse through

gap-junctions among the pancreatic islets b-cells, or if

it does diffuse, the electrical coupling is much stronger

than calcium coupling.

Prediction 2. Glucose-6-phosphate (G6P) does diffuse

through gap-junctions among the pancreatic islets

b-cells. Moreover, sufficiently strong coupling through

G6P can kill the glycolytic oscillations.
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