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A B S T R A C T

Parameterized systems of nonlinear ordinary differential equations, the type of system that is often used in mathematical models for biological systems, can be of
sufficient complexity that it can take years to appreciate the full range of behaviors that can be produced. Global sensitivity analysis is one tool that has been
developed for determining which parameters have the largest impact on the behavior of the model. Thus, it provides the user with a tool to know where to look in
parameter space for important changes in behavior. However, it says nothing about the underlying mechanism mediating a change in behavior. For this, other tools
exist. If the system dynamics occur over multiple highly-separated time scales then one useful analysis tool is fast/slow geometric analysis, also known as geometric
singular perturbation analysis. This is based on bifurcation analysis of a fast or slow subsystem, and can shed light on the influence that a parameter has on structures
of either subsystem, and thus on the system dynamics. Hence, once one knows where to look in parameter space for interesting behavior, this technique describes
how to look at the system to extract information about how parameter changes influence the behavior of the system. In this study, we combine the two techniques in
the analysis of bursting behavior in a model of insulin-secreting pancreatic β-cells, with the goal of determining the key parameters setting the period of the bursting
oscillations, and understanding why they are so influential. This can be viewed as a case study for combining mathematical techniques to build on the strengths of
each and thereby achieve a better understanding of what most influences the range of model behaviors and how this influence is brought about.

1. Introduction

Global sensitivity analysis is often used to determine the impact that
changes in parameters have on an output of a mathematical model. This
output could be the value of an equilibrium state of the system, or a
time delay before activation of some component of the model, or the
amplitude or period of a limit cycle oscillation. Several global sensi-
tivity analysis algorithms exist [16]. The advantage of these global,
rather than local, sensitivity algorithms is that the effects of parameter
variation are sampled over a hypercube about one or more center points
in parameter space, rather than along a single dimension. While global
sensitivity analysis is good at determining which parameters have the
most influence on the system output, that is, at determining where to
look in parameter space for changes in behavior, it is not often clear
why that is, since the sampling algorithm does not reveal the me-
chanisms for the model dynamics. Thus, while numerical simulations
can validate the results of the sensitivity analysis, the basis for the
sensitivity has rarely been analyzed mathematically (but see [14]).

In this article, we apply global sensitivity analysis (Sobol’ indices) to
a multi-timescale model [1] for which the effects of changes in para-
meter values can be assessed through a geometric singular perturbation
analysis. In particular, a fast/slow analysis is used in which the system
is decomposed into fast and slow subsystems, based on the timescales of

the system variables [2,4,24]. We therefore combine a method for de-
termining the importance of parameters on system output with an
analysis technique that can illustrate in a geometric manner why the
parameters have the impact that they do. In this model, for bursting
electrical activity of insulin-secreting pancreatic β-cells, the output
under consideration is the period of the bursting oscillation. The
parameters are conductance values for ionic currents and shape para-
meters for activation functions. This model is chosen for the study since
it is highly amenable to fast/slow geometric analysis, facilitating the
analysis of parameter contributions to the system behavior. It also
serves as a template for other biophysical models for bursting electrical
activity (e.g., [3,7–9,12]), and therefore this study provides a road map
for how global sensitivity analysis and fast/slow geometric analysis can
be performed synergistically on other multi-timescale systems.

In stimulatory levels of glucose, pancreatic β-cells produce bursts of
electrical activity (electrical impulses) that are roughly periodic with a
period that can range from a few seconds to several minutes [5]. To
account for this large spread of the burst period, the so-called “phantom
burster” model was developed [1] that consists of two variables that
vary on a fast timescale and generate the impulses, and two variables
that vary on slow timescales and are responsible for packaging impulses
into bursts. The first of these, s1, has an intermediate time constant
appropriate for the production of bursting with a higher frequency,
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while the second, s2, has a much larger time constant appropriate for
the production of lower frequency bursting. The combination of the two
slow variables with the two fast variables is sufficient to drive bursting
oscillations over the full range of periods observed in β-cells. The fast/
slow geometric analysis technique has been applied to this and a related
phantom bursting model to elucidate the mechanisms for the different
types of bursting: fast, medium, and slow [1,3]. However, no systematic
study was performed to determine the set of parameters that have the
largest impact on setting the burst period. In this report, we determine
the effectiveness of global sensitivity analysis in determining these key
parameters. Once the parameters have been identified, we use fast/slow
geometric analysis to determine why they are so important in setting
the burst period. The global sensitivity analysis thus tells us where to
look, while the fast/slow analysis explains how to look for the influence
of the key parameters on the model behavior.

2. Methods

2.1. The phantom bursting model

We employ a minimal model for electrical bursting in pancreatic β-
cells [1] that has two variables, membrane potential (V) and a fast
activation variable for K+ channels (n), for the production of electrical
impulses and two variables that package the impulses into bursts. The
latter two variables change on slower time scales. The first, s1, has a
time constant of 1 s, while the second, s2, has a time constant of 2 min.
Both are activation variables for slowly-activating K+ channels. The
differential equations for this multi-timescale system are:
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The ionic currents are:
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where the first is a Ca2+ current, the next three are K+ currents, and the
last is a constant-conductance leakage current. The activation variables
have the following equilibrium functions:
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The time constant for n is given as the following function of V:

V
V

( ) 8.3
1 exp[( 9)/10]n =

+ + (14)

with units of ms. Parameters that are not varied throughout the study
are given in Table 1.

Phase plane and fast/slow analysis are performed using the XPPAUT
software package. Computer codes are available for free download from
www.math.fsu.edu/bẽrtram/software/islet.

2.2. Global sensitivity analysis

For global sensitivity analysis, we estimate the Sobol’ indices of the
parameters with respect to the burst period, and we also analyze scatter
plots of the burst period vs. the parameters. In general, given a quantity
of interest (QoI) as a square-integrable function of parameters,
y f p p( , , ),k1= … the total Sobol’ index of a parameter pi, denoted by S ,i
can be statistically understood as,

S
E V Y

V Y
P( ( | ))

( )
,i

P iP i i=
(15)

where Pi is the random variable for the parameter pi, P∼ i is the vector
of random variables for all parameters but pi, and Y is the random
variable for the output y. Here, it is assumed that all of the parameters
are independent and uniformly distributed. The symbol E (·)P i is the
mean over all of the parameters but pi, and the symbol V (·)Pi is the
variance over the parameter pi. Eq. (15) then implies that a high Si
indicates a high expected value of the variance in the output due to the
variance in the parameter pi, making it a significant parameter.

To numerically estimate the total Sobol’ indices, we employ
Jansen’s scheme [17], which has been shown to be more efficient as
compared to similar sampling-based schemes, especially when used in
conjunction with quasi-random sequences [22,25]. These sequences are
not actually random since they follow a specific sampling algorithm.
However, they have been shown to have a low discrepancy in the
context of higher uniformity in the distribution of sampling of a high-
dimensional space. Using the notation from Saltelli et al. [25], we begin
with generating two independent sampling matrices A and B, each of
size N× k, where N is the number of samples and k is the number of
parameters. Hence, each row represents a sample and each column
represents a parameter. Then, we define a matrix A i

B
( ) where all columns

are from A except the ith column which is from B. Then, the total Sobol’
index is estimated by,
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Table 1
Parameter values that are unchanged throughout the study.

Parameter Value Parameter Value

gCa 280 pS gK 1300 pS
gL 25 pS VCa 100 mV
VK 80 mV VL 40 mV
τs1 1 s τs2 2 min
Cm 4524 fF

Table 2
Parameter values for medium bursting. The interval of variation is ± 5% of
the central values. Also shown is the total of the Sobol’ indices (Si) for each
parameter obtained through the sensitivity analysis.

Parameter Central Value Interval of variation Si

gs1 7 pS [6.65, 7.35] 0.019
gs2 32 pS [30.4, 33.6] 0.01443
Vs1 40 mV [−42, -38] 0.94976
Vs2 42 mV [−44.1, −39.9] 0.0019
σ1 0.5 mV [0.475, 0.525] 0.0021
σ2 0.4 mV [0.38, 0.42] 0.0018
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where, f(A)j is the QoI for the parameters corresponding to the j-th row
of the matrix A and f A( )i

jB
( ) is the QoI for the parameters corresponding

to the j-th row of the matrix A i
B
( ). Our choice of quasi-random sequence

is the Sobol’ sequence [27], and we use randomized and scrambled
Sobol’ sequences for a lower discrepancy and better uniformity in
sampling the parameter space [21]. To further improve the computa-
tional feasibility of the estimation of the total SIs, rather than defining a
fixed number of samples for estimation of SI for all of the parameters,
we define a convergence criterion such that the estimation of the SI for

a parameter stops in runtime if it converges within an acceptable
threshold. Also, we implement the evaluation of the QoI in parallel over
multiple CPU cores. The total SIs provide importance of a parameter
averaged over the region in the parameter space being analyzed. To see
any specific patterns between the QoI and the variation in a significant
parameter, we analyze the scatter plots of the QoI versus the parameters
using the samples in Sobol’ estimation.

The above methods of global sensitivity analysis trade the analytical
complexity involved in phase space analysis of a four-dimensional

Fig. 1. Medium bursting time courses. (A, B) Both V and n are fast variables in which individual impulses are evident during the burst active phases. (C, D) Time
courses of the slow variables s1 and s2 do not exhibit impulses, but instead show the integrated effects of bursts of impulses.

Fig. 2. Projections of a 7-dimensional scatter plot
along each parameter dimension in the case of
medium bursting. Each gray circle is the burst
period for the parameter value shown on the ab-
scissa and some combination of values for the re-
maining 5 parameters. Each blue circle is the mean
burst period for the prescribed parameter value
(mean of the gray circles in that column).
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system, with the complexity of computational feasibility and the pre-
cision of the numerical estimation of the QoI, which in our case is the
burst period. The burst period is estimated by simulating the system of
ODEs (numerically estimated in Python using the LSODA method,
which implements the Livermore Solver for ordinary differential
equations [23]) over a long time period so that the trajectory converges
to oscillations. It is expected that if the burst oscillation is short, then
the final time for convergence of the trajectory to oscillations should be
low. Therefore, we develop an algorithm which dynamically changes
the final time until the trajectory converges to oscillations using a
convergence criterion. This improves the computation time for esti-
mating the burst period for thousands of samples of parameters, which
is required for the estimation of Sobol’ indices.

3. Results

The central questions that we address are which of the 6 parameters
in the variation set are the most important at setting the burst period,
and why are they so important. The variation set consists of those
parameters directly related to the s1 and s2 K+ currents, which are the
ionic currents that package electrical impulses into bursts. The model
that we use for bursting in β-cells [1] can produce oscillations that are
fast, medium, or slow, depending on the choice of the conductance of
the s1-current, gs1. It is likely that different parameters will be important
for setting the burst period in these three regimes, so we consider each
regime separately, beginning with medium bursting that for many years
was the only type of bursting observed in β-cells from intact islets of
Langerhans [11,15].

Fig. 3. Projections of the medium bursting orbit onto the plane of the slow variables for four values of Vs1 near 40 mV. The range of s2 values covered begins to
increase significantly for V 40s1 > mV.

Fig. 4. Fast/slow analysis of bursting with V 41.5s1 = mV and s 0.6052 = . Stationary solutions of the V n fast subsystem are shown as the green curve (so-
lid=stable, dashed=unstable). Minimum/maximum V values of periodic solutions are shown as red curves. SN=saddle-node bifurcation, HB=Hopf bifurcation,
HC=homoclinic bifurcation.

M. Aggarwal, et al. Mathematical Biosciences 314 (2019) 1–12

4



3.1. The medium bursting period is set primarily by the s1 half-activation
value

We refer to ‘medium bursting’ as bursting with period ranging be-
tween 10 s and 75 s. Model parameter values that produce medium
bursting with a period of 15 s are given in Table 2, labeled as ‘central
values’. The bursting produced with these parameter values is shown in
Fig. 1. Electrical impulses are produced during each burst active phase,
separated by silent phases when the voltage is low or hyperpolarizaed.
In addition to the membrane potential or membrane voltage (V), the
figure also shows time courses for the other three variables: the acti-
vation variable for delayed-rectifying K+ channels (n), a slow activation
variable for another type of K+ channel (s1), and an even slower acti-
vation variable for a third type of K+ channel (s2). The difference in
time scales for the variables is evident from the time courses: impulses
appear in V and n, but are filtered to produce only slow oscillations in
the s1 and s2 time courses.

To determine which parameters have the greatest impact on the
burst period (defined as the sum of one active and one silent phase), we
perform a global sensitivity analysis. A subset of parameters is ex-
amined here, focusing on parameters involved in the dynamics of the
two slow variables of the model, s1 and s2. Because of the timescale of
these variables, changes in their dynamics will have the largest impact
on the burst period. The six parameters that we examine are: the
maximal conductances of the slowly-activated ionic currents (gs1 and
gs2), the voltage for half-activation of these currents (Vs1 and Vs2), and

the slopes of the activation curves for the slow currents (σ1 and σ2).
Here, smaller values of σ yield larger slopes. Each of these six para-
meters is varied by ± 5% of its central value in the sensitivity analysis,
so the sampling is done in a six-dimensional hypercube about the
central point in parameter space. At each point a computer simulation
of the model is performed, and the period of the resulting medium
bursting oscillation is determined. Addition of the period to the six-
dimensional parameter space yields a 7-dimensional scatter plot. For
visualization purposes, we examine the projections of the high-dimen-
sional scatter plot along each parameter dimension. Thus, we obtain six
projected scatter plots, shown in Fig. 2. In each case, the mean burst
period is shown in blue. It took approximately 13.5 h of computer time
to obtain this data and to subsequently conduct the global sensitivity
analysis.

An examination of the scatter plot projections indicates that changes
in five of the six parameters have little impact on the mean or the range
of variation of burst period. There is one parameter, however, that has a
clear effect on the burst period. For this parameter, Vs1 (the half-acti-
vation level for the s1 current), the period increases dramatically for
V 40s1 > mV. In fact, the dramatic increase in burst period for small
changes in Vs1 is an indication that some slow process has been engaged
and that a fast/slow analysis could be applied to understand the me-
chanism for the dramatic change in period. That Vs1 is the most sensi-
tive parameter is quantified by the total Sobol’ index (Si). As shown in
Table 2, this sensitivity metric is much larger for Vs1 than for any of the
other parameters. In fact, it is nearly 100 times larger than the nearest
competitor, gs1, which was a parameter identified in an earlier study to
be of importance in setting the period of medium bursting [1].

Why does the s1 half-activation value have such a large influence on
burst period for V 40s1 > mV? To begin to understand this, we project
the burst trajectory onto the plane of the slow variables, i.e., the s1s2-
plane (Fig. 3). This is done for four values of Vs1 near 40 mV. For
V 41.5s1 = mV (blue trace) the closed burst orbit extends over the
maximum range of s1, 0 to 1. In contrast, it extends over a very small
range of s2, from 0.59–0.62. This difference reflects the much larger
time constant for s2 versus that of s1. The orbit for V 40.5s1 = mV is
similar. However, for V 39.5s1 = mV and particularly V 38.5s1 = mV,
the s2 range covered is several times greater. Given the large s2 time

Fig. 5. (A) The s1 nullcline is translated upward when Vs1 is increased, moving the intersection with the periodic branch further from the homoclinic bifurcation HC.
(B) The effect on the s1 nullcline of a ± 5% change in σ1 is very small.

Table 3
Parameter values for fast bursting, along with their intervals of variation. Also
shown is the total of the Sobol’ indices for each parameter.

Parameter Central value Interval of variation Si

gs1 20 pS [15, 25] 0.96
gs2 32 pS [24, 40] 0.138
Vs1 40 mV [ 43, 39] 0.096
Vs2 42 mV [ 43, 39] 0.132
σ1 0.5 mV [0.375, 0.625] 0.069
σ2 0.4 mV [0.3, 0.5] 0.081
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constant, this larger coverage corresponds to a much larger burst
period. Thus, the reason for the larger burst period when V 40s1 > mV
is the large range of s2 values taken on during the oscillation. But why
does this happen? To answer this question we perform a fast/slow
analysis.

We begin by clamping the slowest variable to the value taken on
during the beginning of the burst active phase. For the case
V 41.5s1 = mV this is s 0.6052 = . We then construct a bifurcation dia-
gram using the other slow variable, s1, as the bifurcation parameter.
There is a Z-shaped branch of equilibria of the V n fast subsystem
called the critical manifold, projected into the s1V-plane in green in

Fig. 4. Stable branches are indicated with solid curves, while unstable
branches are shown as dashed curves. Changes in stability occur at two
saddle-node bifurcations (SN1 and SN2) and a Hopf bifurcation (HB).
At the HB, a branch of stable periodic solutions emerges (red), re-
flecting continuous trains of impulses. The periodic branch terminates
at a homoclinic bifurcation (HC) where it connects with a branch of
saddle points. In Fig. 4, the periodic branch is shown as a curve for the
minimum V and another for the maximum V taken on during the os-
cillation.

The next step in the fast/slow analysis is to add back the s1 dynamics
(while keeping s2 fixed), now thinking of the bifurcation diagram as a

Fig. 6. Scatter plot projections for the case of fast bursting. The blue circles indicate mean values.

Fig. 7. Four fast bursting orbits projected into the plane of the slow variables. The range of s1 values covered increases with smaller values of gs1.

M. Aggarwal, et al. Mathematical Biosciences 314 (2019) 1–12

6



generalized V-nullcline. The s1-nullcline (blue) is then superimposed,
along with the burst trajectory (black; Fig. 4). During the silent phase
when V is low, the trajectory moves leftward along the bottom branch
of the critical manifold. Once this terminates at SN2, the trajectory
moves to the spiking branch at the initiation of the burst active phase.
Now on the opposite side of the s1-nullcline, the trajectory moves
rightward. As it approaches the s1-nullcline, the rightward motion slows
down and the trajectory falls off the spiking branch at its termination at

HC. This is the end of the burst active phase and the beginning of the
silent phase. This bursting oscillation, driven by slow variation in s1,
relies on the interval of bistability of the fast subsystem between SN2
and HC. It also relies on the fact that the s1-nullcline does not intersect
the bottom branch of the critical manifold, and intersects the spiking
branch only near the HC bifurcation (Fig. 5, V 41.5s1 = mV). When Vs1
is increased, the s1-nullcline is translated upwards, so that its inter-
section with the spiking branch is further from the HC (Fig. 5A). In the

Fig. 8. Fast/slow analysis of fast bursting with four different values of gs1 and s2 clamped at its average value in each case. (A) g 16s1 = pS, s2= 0.475, (B)g 18s1 = pS,
s2= 0.456, (C) g 21s1 = pS, s2= 0.438, (D) g 23s1 = pS, s2= 0.420. The interval of bistability is smaller for larger values of gs1.

Fig. 9. Superposition of four critical manifolds for the case of fast bursting, corresponding to g 16s1 = pS, 18 pS, 21 pS, and 23 pS. As gs1 increases, the interval of
bistability between the bottom stationary branch and the periodic branch (interval from SN2 to HC) decreases. In all cases, the s1 nullcline (blue) intersects the
critical manifold on the middle stationary branch, below the periodic branch. The right panel is a blow up of the left.
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two cases of V 39.5s1 = mV and 38.5 mV, the intersection is suffi-
ciently far away so that the trajectory would get stuck here if s2 re-
mained clamped. That is, there would be no bursting since the trajec-
tory would not escape the active phase. It is the dynamics of s2 that, in
these cases, enables bursting. Once the trajectory stalls near the inter-
section on the spiking branch, it is the slow increase in s2 that becomes
key. This increase shifts the critical manifold leftward, moving the in-
tersection closer to the HC. Eventually, the distance between the two is
so small that the trajectory can escape, ending the active phase. The
increase in the value that s2 must take on is the reason for the larger
excursion in the s1s2-plane in Fig. 3 for V 39.5s1 = mV and 38.5 mV.
Since s2 changes on a much slower time scale than s1, it is also the
reason that the burst period is much greater for values of V 40s1 > mV.

This analysis explains the sensitivity to the parameter Vs1 revealed
in the global sensitivity analysis, but what about the insensitivity to
± 5% changes in gs1, gs2, Vs2, σ1, and σ2? Changing gs1 or gs2 varies the
slope of the slow manifold, and thus the location of the HC, but the
effect on the burst period is minor for the ± 5% variation in these
parameters. Changes in σ1 affect the slope of the s1-nullcline, and thus
the location of the intersection with the periodic branch of the critical
manifold. But this change in location is small, and so too is its effect on
the burst period. This is demonstrated in Fig. 5B, where s1 nullclines are
shown for σ1 at ± 5% of its central value. Changes in Vs2 and σ2 affect
the range of values taken on by s2, affecting the slow manifold, and thus
the HC. None of these effects are large enough to have a noticeable

impact on the burst period (Fig. 2).

3.2. A different parameter has the primary impact on fast bursting period

Fast bursting refers to bursting with a period of 10 s or less. Fast
bursting periods of 2–5 s have been observed in single-cell electro-
physiological studies [13,18] as well as in intact islets following the
application of acetylcholine [6,10]. The central parameter values for
fast bursting, with a period of 3 s, are given in Table 3. We restrict the
parameter variation so that bursting remains fast, with period < 10 s,
and for this reason the interval of variation of Vs1 and Vs2 is centered
about 41 mV rather than their central values. Also, since ± 5%
parameter variation did not give a large range of burst periods in fast
bursting, we increased the parameter variation to ± 25% in all of the
remaining parameters. The intervals of variation are shown in Table 3.

The effects of parameter variation on the burst period are shown in
the projected scatter plots of Fig. 6. It took approximately 7 h of
computer time to obtain this data and to subsequently conduct the
global sensitivity analysis. In this case, only the parameter gs1 has a
large effect on the burst period. This is most evident from an ex-
amination of the means (blue circles), but also the range of variation of
the burst period is much greater when gs1 is included in the set of varied
parameters (as it is in all panels except panel A) than when it is clamped
(panel A). The greater impact of gs1 on burst period is also demonstrated
by the total of the Sobol’ indices, Si. This is nearly 7 times greater for gs1
than it is for the nearest competitor, Vs1 (Table 3). Thus, the most
significant parameter for fast bursting is different than that for medium
bursting.

To understand the reason for the large influence of gs1 on the burst
period we first project the burst trajectory onto the plane of the slow
variables for several values of gs1 (Fig. 7). Unlike the case for medium
bursting, the range of s1 values taken on during fast bursting is not
maximal. In particular, s1 never reaches its maximal value of 1. Instead,
as gs1 is decreased the trajectory reaches larger and larger values. The
need to attain larger s1 values to generate sufficient ionic current for
active phase termination is the reason for the increase in the burst
period for small gs1 values in Fig. 6. In contrast, the range of values of s2

Table 4
Parameter values for slow bursting, along with their intervals of variation. Also
shown is the total of the Sobol’ indices for each parameter.

Parameter Central value Interval of variation Si

gs1 3 pS [2.85, 3.15] 0.0225
gs2 32 pS [30.4, 33.6] 0.287
Vs1 40 mV [ 42, 38] 0.663
Vs2 42 mV [ 44.1, 39.9] 0.0036
σ1 0.5 mV [0.475, 0.525] 0.0032
σ2 0.4 mV [0.38, 0.42] 0.0018

Fig. 10. Scatter plot projections for the case of slow bursting. The blue circles indicate the mean values.
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taken on during a burst changes little with gs1, indicating that this is not
a major factor in the change in burst period with gs1. To understand why
the s1 range changes with gs1 we again turn to fast/slow analysis.

As before, bifurcation diagrams of the fast subsystem are shown in
Fig. 8, now with four different values of gs1. In each case, the second
slow variable is clamped at its average value taken on during the
bursting oscillation. For small values of gs1 there is a large range of
bistability that must be traversed to complete one cycle of bursting
(Fig. 8A). As gs1 is increased the knees of the critical manifold come

together, as do the SN2 and HC bifurcations. With the reduced interval
of bistability, the trajectory spends less time in silent and active phases,
resulting in smaller burst periods. The critical manifolds for all four
cases are overlaid in Fig. 9. Unlike in the case of medium bursting,
translating the s1 nullcline up or down by changing the Vs1 parameter
has little effect on the bursting. This is because the s1 nullcline and the
periodic branch of the critical manifold never intersect when the
bursting is fast, so that dynamic changes in s2 are not needed to get the
trajectory out of the active phase.

Fig. 11. In the fast/slow analysis of slow bursting, the effect of increasing Vs1 is to translate the s1 nullcline upward. For V 40s1 > mV, this results in an intersection of
the nullcline with the periodic branch of the fast subsystem. The larger the value of Vs1 the deeper the intersection in the periodic branch (shown in the blow up on
the right). Nullclines are shown for two values of Vs1, one value less than 40 mV and the other greater than 40 mV. In addition, g 30.5s2 = pS and s 0.6362 = .

Fig. 12. During slow bursting, s2 must reach a larger value to terminate a burst active phase when Vs1 is smaller. The s2 value reached during the silent phase is the
same for both values of Vs1. Therefore, the range of values taken on by s2 is greater when Vs1 is larger and V 40s1 > mV. For this example, g 30.5s2 = pS.
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3.3. The slow bursting period is sensitive to both s1 and s2 current
parameters

We refer to slow bursting as bursting with period greater than 70 s.
It is often observed in intact pancreatic islets [20] and occasionally in
single β-cells or small clusters of β-cells [1,19,26]. Central model
parameter values that produce slow bursting with a period of 1.5 min
are given in Table 4, and as before we vary these values ± 5% for
sensitivity analysis.

Scatter plot projections from the sensitivity analysis (Fig. 10) show
that the parameters having the most impact on burst period are gs2 and
Vs1, followed by gs1. Changes in the other parameter values have little
impact. This result is quantified by the total of the Sobol’ indices; Si is
greatest for Vs1, followed by gs2, and then at a much smaller value for gs1
(Table 4). The indices for other parameters are negligible by compar-
ison. It took approximately 2 hours of computer time to conduct the
global sensitivity analysis.

The reason that Vs1 has a large impact on burst period when
V 40s1 > mV is the same as in the case of medium bursting. Increasing
the value of the parameter translates the s1 nullcline upward, so that the
intersection of the nullcline with the periodic branch that occurs for
V 40s1 > mV occurs further to the left in the s1V-plane for larger Vs1
values (Fig. 11). That is, the intersection is deeper into the periodic
branch, so s2 must increase to a larger value for the burst trajectory to
escape the active phase (Fig. 12). During the silent phase, s2 reaches the
same value regardless of the value of Vs1 (Fig. 12). Therefore, for
V 40s1 > mV, s2 must cover a larger range of values to produce
bursting for larger values of the Vs1 parameter, and since the time
constant for s2 is large this extra coverage greatly increases the burst

period.
In the case of medium bursting, and indeed for the first time, the gs2

parameter has a significant impact on the burst period with ± 5%
variation from its central value. Why is this the case? When the burst
trajectory is projected into the s1s2-plane for two values of gs2 it is un-
clear whether changing gs2 changes the range of s2 values taken on
during bursting (Fig. 13A). However, when the orbits are translated so
that the minimum s2 values are equal (Fig. 13B), it becomes clear that s2
covers a larger range of values for the smaller gs2 value. It is for this
reason that the burst period is larger when gs2 is smaller (Fig. 10B).

To understand why gs2 has the effect that it does on the burst period,
it is best to analyze the bursting in the s2V-plane, now treating s1 as a
fast variable and s2 as the slowly-varying parameter. Fig. 14A shows a
bifurcation diagram of the V, n, s1 fast subsystem for two different
values of gs2. For the larger value of the parameter the diagram is
shifted leftward, so when the burst trajectory is superimposed (black
curves) it is left-shifted in the case of g 33.5s2 = pS. It is not, however,
clear why the range of s2 values covered during the bursting is larger for
smaller gs2. To see this, we focus on the portion of the diagram that
covers the bistable region of the fast subsystem. That is, the portion
between the left saddle-node bifurcation of the critical manifold and the
homoclinic orbit that terminates the periodic branch (Fig. 14B,C). In
both panels, the trajectory leaves the bottom branch when the saddle-
node is reached, and moves almost vertically to the periodic branch
(left vertical portion of the orbits). The active phase terminates and the
trajectory moves almost vertically downward from the periodic branch
to the lower portion of the critical manifold (right vertical portion of
the orbits) when the homoclinic bifurcation is reached. The difference
between the s2 value of the homoclinic bifurcation and the saddle-node

Fig. 13. (A) Projections of slow bursting orbits for two values of gs2. (B) When the orbits are translated so that the minimum s2 values coincide it is clear that s2 covers
a larger range of values when gs2 is smaller. In this example, V 41.5s1 = mV.
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bifurcation, which is the interval of bistability in the fast subsystem,
thus determines the range of values taken on by s2 during bursting. This
range of values is larger for smaller values of gs2.

4. Discussion

Understanding the behavior of a parameterized model is facilitated
by knowing which parameters most affect the model’s behavior and
why they have these effects. The various forms of global sensitivity
analysis were developed to achieve the first task of identifying key
parameters [16,25,28], while a host of mathematical tools is available
for achieving the second task of identifying the means of action of a
parameter. In the case of multi-timescale systems, the tool often used is
fast/slow geometric analysis [2,4,24]. We have demonstrated how the
two mathematical tools can be interwoven in a synergistic way. Prior
fast/slow analysis of our model system indicated that there were three
distinct regimes for bursting behavior: a fast regime in which the s1
variable drives the oscillations, a slow regime where s2 drives the
rhythm, and an intermediate regime where the two slow variables share
the role of driving the oscillations [1]. In this prior analysis, changes in
the parameter gs1 were used to move the system from one regime to
another, because of its observed impact on the burst period. The effects
of changing other parameters were not systematically explored.

In this report, the use of global sensitivity analysis to identify im-
portant parameters within each behavioral regime confirmed the im-
portance of the gs1 parameter, but also revealed other important para-
meters. It is noteworthy that the most important parameters differed

among the regions of parameter space that produced the different forms
of bursting. In the case of fast bursting, gs1 had the most impact on the
burst period, supporting the use of this parameter in [1]. Indeed, none
of the remaining five parameters that were analyzed had a systematic
effect on the burst period. Use of fast/slow analysis demonstrated that
the large effect of gs1 could be understood in terms of its effect on the
critical manifold; larger values of gs1 resulted in smaller regions of
bistability. In the case of medium bursting, global sensitivity analysis
revealed that the Vs1 parameter had a much greater effect on the burst
period than did the next competitor, gs1. However, this was only true for
values of Vs1 greater than 40 mV. The basis of this unexpected result
was again revealed through a fast/slow analysis; for V 40s1 > mV an
increase in the parameter shifted the intersection of the s1 nullcline
deeper into the periodic branch of the fast subsystem. Without the use
of global sensitivity analysis it is quite possible that this phenomenon
would have been missed, and without the fast/slow analysis the basis of
the phenomenon would certainly have remained a mystery. Finally, in
the case of slow bursting, the previously identified parameter gs1 was
not even among the two most important parameters identified through
global sensitivity analysis, Vs1 and gs2. The fast/slow analysis revealed
that Vs1 had an effect over the same range of values as with medium
bursting, and for the same reason. The other most important parameter,
gs2, affected the slow burst period much in the same way as changes in
gs1 affected the fast burst period, by changing the size of the region of
bistability. However, for slow bursting the fast subsystem was extended
to include the s1 variable, and the interval of bistability was described
in terms of the s2 variable rather than the s1 variable. Again, global

Fig. 14. Slow bursting analysis of the V, n, s1 fast subsystem, with s2 as the slowly varying bifurcation paramter. (A) Slow manifolds with superimposed burst
trajectories for two values of gs2. (B) Blow up focusing on the region of bistability, with g 30.5s2 = pS. The s2 variable traverses a distance of 0.781-0.633=0.148. (C)
Blow up with g 33.5s2 = pS. The s2 variable traverses a distance of 0.711-0.576=0.135. In both cases, V 41.5s1 = mV.
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sensitivty analysis and fast/slow analysis were synergistic in identifying
key parameters and in understanding why they are key.

Rather than searching for key parameters, one could ask what effect
changes in a specific parameter has on the behavior of the system.
Indeed, this was the question asked in a prior study that combined
global sensitivity analysis with fast/slow geometric analysis [14]. As
shown in that study, and is clear from the present study, the answer to
the question depends on the context. That is, it depends on where the
system lies in parameter space. Changes in gs1 have a significant impact
on the burst period when the bursting is in the fast or medium regime,
but not when bursting is in the slow regime. As discussed in [14], this is
important to realize when making model predictions for experimental
testing; since it is exceedingly rare to know the values of all or most of
the parameters in a biological system, model predictions may fail not
because the model is wrong, but because the system is in a region of
parameter space that is significantly different from that of the model.
Realizing the full range of behaviors of the model prior to experimental
testing is therefore beneficial.
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