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Why pacing frequency affects the production of early afterdepolarizations in cardiomyocytes: An
explanation revealed by slow-fast analysis of a minimal model
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Early afterdepolarizations (EADs) are pathological voltage oscillations in cardiomyocytes that have been
observed in response to a number of pharmacological agents and disease conditions. Phase-2 EADs consist
of small voltage fluctuations during the plateau of an action potential, typically under conditions in which the
action potential is elongated. Although a single-cell behavior, EADs can lead to tissue-level arrhythmias. Much
is currently known about the biophysical mechanisms (i.e., the roles of ion channels and intracellular Ca2+

stores) for the various forms of EADs, due partially to the development and analysis of mathematical models.
This includes the application of slow-fast analysis, which takes advantage of timescale separation inherent in the
system to simplify its analysis. We take this further, using a minimal three-dimensional model to demonstrate that
phase-2 EADs are canards formed in the neighborhood of a folded node singularity. This allows us to predict the
number of EADs that can be produced for a given parameter set, and provides guidance on parameter changes that
facilitate or inhibit EAD production. With this approach, we demonstrate why periodic stimulation, as occurs in
intact heart, preferentially facilitates EAD production when applied at low frequencies. We also explain the origin
of complex alternan dynamics that can occur with intermediate-frequency stimulation, in which varying numbers
of EADs are produced with each pulse. These revelations fall out naturally from an understanding of folded node
singularities, but are difficult to glean from knowledge of the biophysical mechanism for EADs alone. Therefore,
understanding the canard mechanism is a useful complement to understanding of the biophysical mechanism that
has been developed over years of experimental and computational investigations.
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I. INTRODUCTION

In the normal heart, each heartbeat is associated with an
action potential (AP). The cardiac AP consists of a depolar-
ized phase in which the voltage is elevated; this is associated
with transient increased permeability of the cell membrane
to Na+ and Ca2+. The depolarized phase is followed by a
repolarization to the resting membrane potential, associated
with increased permeability to K+ ions. These changes in the
membrane potential lead to a sequence of events that result
in contraction of the heart muscle, allowing for pumping of
blood through the body.

Early afterdepolarizations (EADs) are pathological voltage
oscillations observed in heart muscle cells (cardiomyocytes)
during the repolarizing phase of the cardiac AP under con-
ditions in which the AP is elongated (Fig. 1). EADs can be
induced by hypokalemia [1,2], as well as oxidative stress [3].
They are also often observed following the administration of
drugs that act on K+, Na+, or Ca2+ ion channels [2,4–11].
These drug-induced EADs can lead to ventricular tach-
yarrhythmias [5,12,13]. Genetic defects in Na+ and K+ chan-
nels that prolong the action potential duration can also lead to
an increased rate of EADs and risk of sudden death [14].

EADs have been associated with long-QT syndrome [9],
and long been recognized as a mechanism for the generation
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of premature ventricular complexes (PVCs) in the electro-
cardiogram [15]. Different ventricular arrhythmias, including
torsade de pointes, are thought to be initiated by PVCs stem-
ming from EADs [9,16–18]. That is, EADs at the myocyte
level have been implicated as the primary mechanism promot-
ing arrhythmias at the tissue level in acquired and congen-
ital long-QT syndromes, including polymorphic ventricular
tachycardia and ventricular fibrillation [5,19,20].

In this study, we investigate EADs from an alternative
perspective that views the phenomenon as one that can be
understood in terms of dynamical systems, complementing
the biophysical perspective couched in the language of ionic
currents. When viewed as a multitimescale phenomenon that
occurs due to twisting and interacting geometric structures
that control the flow of the system, it becomes possible to
determine conditions facilitating EADs, and maneuvers that
can be performed to eliminate them. It also becomes evident
why the frequency at which the cell is stimulated is important
in determining whether EADs occur, and if so, how many
there will be (and thus the duration of the extended AP).

Numerous mathematical models have been constructed
at the cellular level to study the genesis of EADs [2,21–24].
These confirmed the importance of increased inward Ca2+

current and decreased outward K+ current in the production of
EADs. They also confirmed that reactivation of Ca2+ current
is a key element of EAD production [1,24]. Modeling at the
tissue level has also been done, in this case to understand
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FIG. 1. Representative (a) healthy APs and (b) APs with EADs
in a model cardiomyocyte [system (1)]. EADs occur during the
repolarizing phase of prolonged APs.

EAD propagation, synchronization, and the genesis of
arrthymia [25–28]. These studies demonstrated that EADs at
the cellular level can lead to arrhythmias at the tissue level, as
has been suggested in experimental studies.

A useful analysis technique for understanding the behav-
ior of models of excitable systems such as cardiomyocytes
separates system variables into those that change on a fast
timescale and those that change on a slow timescale, and then
analyzes the two subsystems and their interaction [29]. This
slow-fast analysis has been used to understand the genesis of
EADs, using a three-variable model in which two variables
were treated as “fast” and one treated as “slow.” It was shown
that EADs can arise via a delayed subcritical Hopf bifurcation
of the fast subsystem [23,30]. This explanation, while pro-
viding insights, is limited in its descriptive capabilities. For
example, it provides limited information on parameter sets for
which EADs may occur, and it does not allow one to predict
the number of EADs that are produced when they do occur.

Recently, it was demonstrated that EADs can be attributed
to folded-node singularities and their accompanying canard
orbits [31]. This was done with the same three-variable model
for cardiac APs, but now treating one variable as fast and
the other two as slow. Such a splitting provides the potential
for insights not available with the 1-slow-2-fast splitting, as
demonstrated in [31] and in an earlier publication that focused
on electrical bursting in pituitary cells [32]. In particular,
the canards of a folded node act as phase and parameter
space boundaries, separating orbits with different rotational
properties. The folded node singularities are the means by
which the existence of these canards can be determined and
their properties calculated. Thus, by tracking folded nodes and
their associated canards, it is possible to determine regions of
parameter space in which EADs occur.

Ventricular cardiomyocytes are, in a physiological setting,
subject to periodic stimulation from upstream cardiac cells,
originating at the sinoatrial node. Prior experimental and mod-
eling studies have demonstrated that EADs occur more readily
at low pacing frequencies than at high frequencies [2,24,33].
At intermediate frequencies the dynamics are complex, con-
sisting of alternans with varying numbers of EADs at each
stimulus, a behavior described as “dynamical chaos” [2,23].
The primary goal of this article is to provide an understand-

ing for these phenomena. To achieve this, we use the same
minimal cardiac AP model developed in [2] and used recently
in [31], and apply a 2-slow-1-fast splitting. We demonstrate
that the effects of periodic stimulation of the model cell
can be understood precisely using canard theory [34–36]. In
particular, we show that the number of EADs produced by
a stimulus depends on where it injects the trajectory relative
to the canards, and with this knowledge we demonstrate why
low-frequency pacing is expected to yield more EADs than
is high-frequency pacing. We also demonstrate the origin of
the “dynamical chaos” that occurs at intermediate-frequency
pacing. Finally, we demonstrate why drugs that inhibit the
opening of K+ channels facilitate EADs, and why EADs can
be induced by hypokalemia [1,2,5].

II. MODEL

We study a low-dimensional model for the electrical activ-
ity in a cardiomyocyte [2]

Cm
dV

dt
= −(IK + ICa ) + Isti,

dn

dt
= n∞(V ) − n

τn
,

dh

dt
= h∞(V ) − h

τh
,

(1)

where IK is a repolarizing K+ current, ICa is a depolariz-
ing Ca2+ current, and Isti is a pacemaking stimulus current.
System (1) excludes the depolarizing Na+ current since it is
inactivated during the plateau of the AP and has almost no
effect on EADs [37]. Here, V is the membrane potential across
the cell, n the activation variable for the K+ channels, and h
the inactivation variable for the L-type Ca2+ channels. The
ionic currents are

IK = gK n(V − VK ) and ICa = gCam∞(V )h(V − VCa ),

and the stimulus current provides the system with square
wave pulses of 1-ms duration and 40-μA/cm2 amplitude at
a frequency set by the pacing cycle length (PCL),

Isti = 40
∑
k∈N

{H (t − k · PCL) − H (t − [k · PCL + 1])}.

(Here H (·) is the Heaviside function.) The steady state activa-
tion and inactivation functions are

x∞(V ) = 1

1 + exp
(

Vx−V
sx

) , h∞(V ) = 1

1 + exp
(

V −Vh
sh

) ,

where x ∈ {m, n}. Unless stated otherwise, the parameters are
fixed at the values in Table I (same as in [2]).

The model cell (1) exhibits two distinct AP morphologies:
regular APs and APs with EADs. We use the Farey sequence
notation 1s to denote a single large-amplitude AP with s small-
amplitude EADs. Thus, a regular AP is denoted 10 and an AP
with two EADs is denoted 12. More complicated rhythms are
described using concatenations of these Farey sequences. For
instance, a rhythm that periodically exhibits three regular APs
followed by a single AP with two EADs is denoted (10)3(12).

Time series in this article were generated by integrat-
ing (1) using fourth-order Runge-Kutta, as implemented in
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TABLE I. Parameters used in the minimal model (1).

Param Value Definition

Cm 0.5 μF/cm2 Membrane capacitance
gCa 0.025 mS/cm2 Max conductance Ca2+ channels
gK 0.04 mS/cm2 Max conductance K+ channels
VCa 100 mV Reversal potential for Ca2+

VK −80 mV Reversal potential for K+

τn 300 ms K+ activation time const
τh 80 ms Ca+ activation time const
Vm −35 mV Voltage at midpoint of m∞(V )
sm 6.24 mV Slope parameter of m∞(V )
Vn −40 mV Voltage at midpoint of n∞(V )
sn 5 mV Slope parameter of n∞(V )
Vh −20 mV Voltage at midpoint of s∞(V )
sh 8.6 mV Slope parameter of s∞(V )

XPP [38]. Bifurcation diagrams were computed using the nu-
merical continuation software AUTO-07P [39]. The attracting
and repelling slow manifolds, and canard solutions, were also
computed in AUTO-07P by solving two-point boundary value
problems. We refer to [40,41] for details on how the slow
manifold and canard computations can be implemented.

III. RESULTS

We now present the main results of the article. First, we
demonstrate the variety of AP morphologies of (1) exhib-
ited under various PCLs, including regular APs, APs with
EADs, and EAD alternans. Next, we show that the EADs
arise from canard dynamics. A similar demonstration was

provided by [31], but we elaborate on how the EADs emerge
as the cell capacitance is increased from 0 (i.e., moving the
system away from the singular limit), and we demonstrate
how the rotational sectors determine the number and duration
of EADs. Moreover, we demonstrate how drugs that inhibit
K+ channels or a hypokalemic environment can facilitate
EAD production. Finally, we completely explain the variety
of AP and EAD morphologies exhibited under various PCLs
in terms of canard-induced mixed-mode oscillations.

A. Action potential duration and number
of EADs increases with PCL

The model cell (1) is entrained to the periodic stimulus; for
the parameter set in Table I, the cell exhibits 1s impulses with
period set by the PCL. For small PCLs (i.e., high-frequency
pulsing), the attractor is a 12 rhythm [Fig. 2(a)]. For interme-
diate PCLs (1240 ms � PCL � 1435 ms), the cell exhibits
complex EAD activity, including 1213 alternans [Fig. 2(b)]
and 12(13)3 rhythms [Fig. 2(c)]. For large PCLs (i.e., low-
frequency pulsing), the cell is in a 13 state [Fig. 2(d)].

We summarize the behavior of the model cell and its
response to periodic stimulation at various frequencies in
Fig. 2(e). We used a dynamic restitution protocol [42] in
which the cell was paced at a fixed PCL until steady state was
reached, after which the action potential duration (APD) and
PCL were recorded. We took the APD to be the time the cell
spends with V > −70 mV. With this choice of restitution pro-
tocol, the PCL is the sum of the APD and the diastolic interval,
so our bifurcation diagram encodes the restitution curves [i.e.,
the plot of the APD as a function of the diastolic interval has
the same qualitative features as shown in Fig. 2(e)].
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FIG. 2. Dynamics of the model cardiomyocyte (1) under variations in PCL. In (a)–(d), the stimulus pulse is “on” during the cyan segments.
The attractor shows (a) 12 APs with EADs for PCL = 1200 ms, (b) 1213 alternans for PCL = 1300 ms, (c) 12(13)3 APs with EADs for
PCL = 1420 ms, and (d) 13 APs with EADs for PCL = 1500 ms. (e) APD versus PCL bifurcation diagram. There is an intermediate band of
PCLs (1240 ms � PCL � 1435 ms) over which the attractor has complex EAD signature. Red markers indicate the PCLs corresponding to
the time series in panels (a)–(d).
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The bifurcation diagram shows that periodic stimulation
elicits three types of behavior. For high- and low-frequency
stimulation, the model cell is in a purely 12 or 13 state,
respectively. In the intermediate-frequency range, the model
cell has complex signature of the form (12)p(13)q, where p and
q are integers. The AP signature becomes more complicated
near the transition to the 13 state. This increasing complexity
of the AP signature near a transition is robust; it occurs
for a wide range of gK and gCa in (1) and has also been
observed in other forced conductance-based cardiomyocyte
models [2,23].

B. EADs arise from canard dynamics

We now show that the dynamical mechanisms responsible
for EADs are canards. To facilitate the analysis, we con-
sider (1) with no stimulus. We will show that (1) has a slow-
fast structure, use this slow-fast splitting to identify the geo-
metric cast of characters involved in EADs, and demonstrate
that folded node canards generate EADs, and these canards
are robust in parameters. Finally, we explain why inhibition
of K+ channels or a hypokalemic environment facilitates EAD
production.

1. The dynamics evolve over multiple timescales

A key observation is that the dynamics evolve over mul-
tiple timescales, with slow depolarized or hyperpolarized
epochs interspersed by rapid transitions. We show this mul-
titimescale structure by introducing dimensionless variables,
v and ts, via

v = V

kV
and ts = t

kt
,

where kV = 100 mV and kt = τn = 300 ms are reference volt-
age and timescales, respectively. With these rescalings, (1) in
the absence of any stimulus becomes

ε
dv

dts
= f (v, n, h),

dn

dts
= kt

τn
(n∞(v) − n) ≡ g1(v, n),

dh

dts
= kt

τh
(h∞(v) − h) ≡ g2(v, h),

(2)

where

f (v, n, h) = −gK n(v − V K ) − gCam∞(v)h(v − V Ca ),

and gu = gu

gref
and V u = Vu

kV
for u ∈ {K, Ca} denote dimension-

less conductances and reversal potentials, respectively. Here,
gref is a reference conductance, and ε = Cm/gref

kt
� 1 is the

ratio of the voltage and reference timescales. The benefit
of recasting (1) in dimensionless form (2) is that it reveals
the timescales in the model. The voltage is fast (timescale
Cm
gref

≈ 5 ms for Cm = 0.5 μF/cm2 and gref = 0.1 mS/cm2).
The activation variable, n, is slow (timescale τn = 80 ms),
and the inactivation variable, h, is superslow (timescale τh =
300 ms). Thus, (2) is a three-timescale problem.

We stress that the specific values chosen for kV and kt

do not change the intrinsic slow-fast structure in the system.
Moreover, the dimensionless formulation (2) is a necessary

formality for the slow-fast analysis. All plots and results from
the geometric analysis will be shown in terms of the original
dimensional variables.

An effective approach to the analysis of multitimescale
problems is Geometric Singular Perturbation Theory
(GSPT) [43–45]. The idea is to decompose a slow-fast
system into lower dimensional slow and fast subsystems,
analyze these subsystems, and combine their information to
understand the origin and properties of the dynamics of the
original model. The GSPT approach, however, is limited to
two-timescale (i.e., slow-fast) problems. In three-timescale
systems such as (2), a choice is usually made: group v and n
as “fast,” or group n and h as “slow.”

Prior studies of (1) grouped v and n as fast, and treated h as
slow [2]. In this 1-slow-2-fast approach, EADs arise because
the depolarized steady state of the (v, n) subsystem loses
stability via a Hopf bifurcation leading to oscillations which
are destroyed at a homoclinic bifurcation [23,27,46]. While
this mechanism is consistent with the in vitro and in silico
observations that EADs appear irregularly under periodic
stimulation, it does not provide insight into how many EADs
should be observed or why the number of EADs changes with
PCL. Here, we treat v as fast, and group n and h as slow. This
2-slow-1-fast approach will allow us to predict the maximal
number of EADs that can be generated, and explain why the
number of EADs changes with PCL.

2. Underlying geometric structure

We now identify the geometric features that organize the
EADs and APs. We begin by reformulating (2) in terms of the
fast time, t f = 1

ε
ts, which gives

dv

dt f
= f (v, n, h),

dn

dt f
= ε g1(v, n),

dh

dt f
= ε g2(v, h).

(3)

System (3) is equivalent to (2) in the sense that solutions of
both systems trace out the same paths in the (v, n, h) phase
space, just at different speeds. We have seen that the dynamics
of (1) alternate between slow and fast epochs. The rapid
transitions between depolarized and repolarized phases are
approximated by solutions of the one-dimensioanl (1D) fast
subsystem

dv

dt f
= f (v, n, h),

dn

dt f
= 0,

dh

dt f
= 0,

(4)

obtained by taking the singular limit ε → 0 in (3). The fast
subsystem is the approximation of (2) in which the slow
variables move so slowly that they are fixed. Similarly, the
slow depolarized or repolarized dynamics are approximated
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FIG. 3. Geometric structure of (1) for the parameter set in
Table I. (a) The outer (blue) attracting sheets of S0 are separated
from the middle (red) repelling sheet by the (red) fold curves L±.
The slow flow (8) (black curves) is directed towards the folds. There
is a folded node (FN, green) on L+ with singular strong canard, γ0

(green). The full system equilibrium (cyan) is a saddle. (b) Projection
into the (V, n) plane. The funnel (gray) of the FN is enclosed by L+

and γ0.

by solutions of the two-dimensional (2D) slow subsystem

0 = f (v, n, h),

dn

dts
= g1(v, n),

dh

dts
= g2(v, h),

(5)

obtained by taking the singular limit ε → 0 in (2). The slow
subsystem is the approximation of (2) in which the fast voltage
variable moves so rapidly that it has already reached steady
state and instantly adjusts to any changes in the gating vari-
ables. Recall that the idea of GSPT is to analyze the 1D fast
and 2D slow subsystems, and combine their information in
order to understand the origin and properties of the dynamics
in the full three-dimensional (3D) system.

We begin with the 1D fast subsystem (4). The equilibria,
S0, of (4) form a cubic-shaped surface [in the (v, n, h) space]
called the critical manifold

S0 =
{

(v, n, h) : hS = − gK n(v − V K )

gCam∞(v)(v − V Ca)

}
. (6)

The outer sheets Sa,±
0 are stable and the middle sheet Sr is

unstable; these are separated by curves L± of points corre-
sponding to fold bifurcations of (4)

L± =
{

(v, n, h) ∈ S0 :
∂ f

∂v
= 0

}
. (7)

The conditions (7) reduce to lines on S0 at constant voltage
values (Fig. 3; red curves); L+ and L− denote the fold curves
at depolarized and hyperpolarized voltages, respectively. Both
also play the roles of firing thresholds. The V axis is also a fold
curve (see Fig. 7 later).

From the linear stability analysis, we conclude that most
solutions of (4) converge to the depolarized attracting sheet
Sa,+

0 or the hyperpolarized attracting sheet Sa,−
0 . Once trajecto-

ries reach one of these sheets, the dynamics slow down and the
slow subsystem (5) becomes the appropriate approximating
system. The algebraic equation in (5) constrains the phase
space to the critical manifold, whilst the differential equations

describe the slow motions along S0. Thus, slow-fast analysis
partitions the phase space into the fast dynamics away from
S0 together with the slow dynamics on S0; S0 is the interface
where the fast and slow subsystems interact.

For the slow evolution on S0, we have differential equations
to describe the motions of n and h, while the algebraic
equation implicitly describes the motions in v (slaved to S0;
Fig. 3 black curves). To obtain an explicit description of the
v motions, we differentiate f (v, n, h) = 0 with respect to ts,
and use the graph representation (6) of the critical manifold.
This gives

dv

dts
= −

(
∂ f

∂n
g1 + ∂ f

∂h
g2

)/
∂ f

∂v
,

dn

dts
= g1,

(8)

where h has been replaced by hS . We stress that (8) is
equivalent to (5); we simply incorporated the restriction to S0

explicitly by setting h = hS . In this formulation, we see that
along the fold curves L± (where ∂ f

∂v
= 0), the v equation of (8)

has a singularity. Solutions of (8) that encounter L± blow-up
in finite time and transition to the fast dynamics [34,35].

To aid our analysis of (8), which features this finite-time
blow-up of solutions along L±, we introduce an auxiliary
time variable via dts = − ∂ f

∂v
dtd . This transforms the slow

subsystem (8) to the desingularized system

dv

dtd
= ∂ f

∂n
g1 + ∂ f

∂h
g2,

dn

dtd
= −

(
∂ f

∂v

)
g1.

(9)

In this setting, the singular points of (8) along L± were trans-
formed into nullclines of (9). Since the transformation that led
to (8) depends on (v, n, h), i.e., the transformation changes
depending on where trajectories are in phase space, some care
must be taken when comparing trajectories of the desingu-
larized system (9) with those of the true slow subsystem (8).
On the attracting sheets, Sa,±

0 , the flow of (9) is topologically
equivalent to the flow of (8) since ∂ f

∂v
< 0 (and hence ts and

td have the same sign). On the repelling sheet, Sr
0, the flow

of (9) is in the opposite direction to the flow of (8) since
∂ f
∂v

> 0 (and hence ts and td have opposite signs). With this
relation between the slow and desingularized systems in mind,
we analyze the dynamics of the desingularized system (9) to
learn about the dynamics of the slow subsystem (8).

The desingularized system possesses two types singulari-
ties. Ordinary singularities are isolated points such that {g1 =
g2 = 0}, and correspond to equilibria of the desingularized
system (9), of the slow subsystem (8), and of the original
model (1). For the parameter set in Table I, there is an ordinary
singularity on Sr

0 (Fig. 3; cyan), corresponding to a saddle
equilibrium.

Folded singularities, M, are isolated points on L± where
the right-hand side of the v equation in (9) is zero,

M =
{

(v, n, h) ∈ L± :
∂ f

∂n
g1 + ∂ f

∂h
g2 = 0

}
. (10)
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FIG. 4. Origin of EADs near the folded node (FN, green) for the standard parameters. (a) Left: singular (black) and nonsingular (magenta,
cyan, and yellow) 13 attractor compared to S0. All orbits enter Sa,+

0 inside the funnel between the singular strong canard γ0 (green) and L+

(red). Right: (V, n) projection. Inset: Zoom on FN. Corresponding voltage series are shown for (b) Cm = 0.5 μF/cm2 (magenta), (c) Cm =
0.25 μF/cm2 (cyan), (d) Cm = 0.1 μF/cm2 (yellow), and (e) Cm = 0 μF/cm2 (black).

Folded singularities are equilibria of the desingularized sys-
tem (9), but not the slow subsystem (8) or the original
model (1). Instead, they are points where both the numerator
and denominator of the right-hand side of the v equation
in (8) vanish at the same time, allowing for a cancellation of
a simple zero. This means solutions of the slow subsystem
may cross the folds (via a folded singularity) with finite
speed and move from an attracting sheet to the repelling
sheet (or vice versa). Such solutions are called singular
canards [47], and play important roles in applications. We
refer to [29,34,35] for extensive overviews of applications
of folded singularities and canards in chemical, neural, and
engineering contexts.

Folded singularities are classified as equilibria of the desin-
gularized system. A folded singularity with real eigenvalues
of the same sign is a folded node; real eigenvalues of opposite
signs is a folded saddle; and complex conjugate eigenvalues
is a folded focus. Folded nodes and folded saddles possess
singular canards, whereas folded foci do not. The model cell
has a folded node on L+ for the standard parameter set (Fig. 3;
green).

3. EADs originate from a folded node

We now demonstrate the origin of EADs in terms of the
underlying geometric structures. To motivate this, we first
take a 13 attractor of (1) (without stimulation) and compare
it to S0 in the (V, n, h) phase space [Fig. 4(a); magenta].
The three EADs can be seen as small loops in the magenta
orbit about L+. In the remaining panels we reduce Cm, or

ε, to bring the system progressively closer to the singular
limit described in Fig. 3. We observe that (i) the EADs are
localized to the neighborhood of the folded node; (ii) by
decreasing ε, the EADs decrease in amplitude (compare
curves of different colors in Fig. 4); (iii) by decreasing ε, the
location in phase space where the trajectory transitions from
a depolarized state to a hyperpolarized state converges to the
folded node. These observations lead us to hypothesize that
the EADs observed for 0 < ε � 1 arise from the folded node
itself.

How do the small oscillations emerge from the folded
node? To answer this, we examine how the sheets, Sa,+

0 and Sr
0,

of the critical manifold persist for small and nonzero ε. As ε is
increased away from zero, the attracting and repelling sheets,
Sa,+

0 and Sr
0, perturb to attracting and repelling slow mani-

folds, Sa,+
ε and Sr

ε , respectively [43,44]. These slow manifolds
are the surfaces to which the slow segments of trajectories
of (1) are slaved. Both Sa,+

ε and Sr
ε are small and regular

perturbations of Sa,+
0 and Sr

0, except in the neighborhood of
the folded node, where they instead twist around a common
axis of rotation [36,47]. The axis of rotation corresponds
to the weak eigendirection of the folded node. The twisted
slow manifolds are shown in Fig. 5 for various perturbations,
corresponding to the Cm values used in Fig. 4. (For the
purposes of visualization, the slow manifolds have only been
computed up to a plane, �, passing through the folded node.
The method of computation is detailed in [40].) The twisting
of the slow manifolds (and the slow flow on them) is confined
to an O(

√
ε) neighborhood of the folded node [48]. Thus, the
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FIG. 5. Attracting (blue) and repelling (red) slow manifolds, Sa,+
ε

and Sr
ε , for (a) Cm = 0.01 μF/cm2, (b) Cm = 0.1 μF/cm2, (c) Cm =

0.25 μF/cm2, and (d) Cm = 0.5 μF/cm2. The twisting of the slow
manifolds produces the EADs. Insets: Intersections of Sa,+

ε (solid
blue) and Sr

ε (solid red) with �. Also shown are the intersections
of Sa,+

0 (dashed blue) and Sr
0 (dashed red) with �. The folded node is

at the intersection of the dashed blue and dashed red curves.

EADs arise from locally twisted slow manifolds around the
folded node.

4. Canards organize the EADs

The local twisting of the slow manifolds results in a finite
number of intersections between Sa,+

ε and Sr
ε , called maximal

canards. For the standard parameter set, there are five maxi-
mal canards. The outermost, γ0, is the maximal strong canard
and is the phase-space boundary between orbits that exhibit
EADs near the folded node and orbits that do not (Fig. 6).
That is, a solution of (1) with initial condition to the left of γ0

in Fig. 6 is a regular 10 AP [Figs. 6(a) and 6(d); cyan curves].
A solution with initial condition between γ0 and the maximal
canard γ1 executes 1 EAD near the folded node [Figs. 6(b)
and 6(d); beige curves]. Any solution with initial condition
enclosed by the canards γ1 and γ2 exhibits two EADs around
the folded node [Figs. 6(c) and 6(d); brown curves]. In gen-
eral, an orbit in the sector between the maximal canards γk−1

and γk will execute k EADs. The innermost maximal canard,
γw, is called the maximal weak canard and is the axis of
rotation for both the slow manifolds and the other maximal
canards [36,47]. Thus, the maximal canards partition the slow
manifolds into sectors based on the rotational properties of
solutions. In this way, the maximal canards organize the EADs
in phase space; the path taken by the trajectory relative to the
maximal canards determines the number of EADs produced.

5. Folded node and EAD dynamics are robust

Given that EADs arise from canard dynamics due to
twisted slow manifolds around a folded node, is it possible to
predict the number of maximal canards and associated EADs?
The answer is “yes,” and it is encoded in the strong and weak
eigenvalues, λs < λw < 0, of the folded node (considered as

FIG. 6. Organization of EADs by maximal canards for the pa-
rameters in Table I. Only the first three maximal canards, γ0 (green),
γ1 (magenta), and γ2 (olive), are shown. (a) A solution (�; cyan)
outside the rotational sectors has no EADs. (b) A solution (�; beige)
in the sector between γ0 and γ1 has 1 EAD. (c) A solution (�; orange)
in the sector between γ1 and γ2 has 2 EADs. (d) Time series, showing
a regular AP (cyan), AP with 1 EAD (beige), and AP with 2 EADs
(orange).

an equilibrium of the desingularized system). Let μ = λw

λs

denote the eigenvalue ratio. Then, provided ε is sufficiently
small and μ 	 √

ε, the maximal number, smax, of EADs
around the folded node is

smax =
⌊

μ + 1

2μ

⌋
, (11)

where 
μ+1
2μ

� denotes the greatest integer less than or equal to
μ+1
2μ

[47,48]. The corresponding number of maximal canards
is smax + 1. For the folded node in Figs. 3 to 6, μ ≈ 0.13 so
that the maximal number of EADs possible is smax = 4, and
there are five maximal canards.

Not only does the formula (11) predict the number of
EADs, it also predicts how the number of EADs changes with
parameters. Bifurcations of maximal canards occur whenever
μ−1 passes through an odd integer value [36]. That is, if the
system parameters are varied so that μ−1 increases through
3, then smax increases from 1 to 2. If the system parameters
are varied so that μ−1 increases through 5, then smax increases
from 2 to 3, and so on.

There are two special cases, μ = 0 and μ = 1, where the
folded node ceases to exist and hence the canard-induced
EADs are eliminated. The resonance μ = 1 corresponds to
the boundary where the folded node becomes a folded focus.
Folded foci do not possess any canards. Hence, the μ = 1
resonance serves as the transition between regular 10 APs
and APs with EADs. This is illustrated in a two-parameter
diagram, where the conductances of the K+ current (gK ) and
the K+ Nernst potential (VK ) are varied and the asymptotic
state of the system (1) is shown (Fig. 7). For parameter values
within the region enclosed by the red μ = 1 curve the folded
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FIG. 7. Genericity of canard-induced EADs. The (gK ,VK ) plane
has been partitioned according to the properties of the folded singu-
larity. Folded nodes and EADs exist in the region enclosed by the
outer μ = 0 (blue) curves and the inner μ = 1 (red) curve. Within
this region, the maximal number of EADs that can be observed
increases as the parameters are moved from the red μ = 1 boundary
to the blue μ = 0 boundaries. The thick arrows indicate possible
effects of drugs that reduce K+ current conductance (leftward arrow)
or increase the magnitude of the K+ Nernst potential (downward
arrow). The asterisks correspond to the (gK ,VK ) values used in Fig. 8.

singularity is a folded focus, so only APs (without EADs) are
produced.

The dark green curves in Fig. 7 are parameter combinations
such that μ = 1/3, so in the region delimited by these curves
and the red μ = 1 curve, smax = 1 and APs with a single EAD
are possible. On the olive curves μ = 1/5 and in the region
delimited by these curves and the dark green curves APs with
two EADs are possible. This process can be continued to
higher odd integer values of μ−1; in the region between the
olive curves and blue curves APs with three or more EADs
are possible.

The μ = 0 resonance (blue curves) is known as a folded
saddle-node (FSN) bifurcation and can occur in several ways.
The FSN bifurcation of type II (FSN II) is a bifurcation
of the desingularized system in which a folded singularity
and an ordinary singularity coalesce and swap stability in a
hybrid transcritical bifurcation [49,50]. That is, for μ > 0, the
folded singularity on L+ is a folded node and the ordinary
singularity on Sr

0 is a saddle. For μ < 0, the folded singularity
on L+ is a folded saddle and the ordinary singularity has
moved to Sa,+

0 where it is a stable node. Hence, the FSN II
bifurcation corresponds to the transition between EADs and
stable depolarized steady states (Fig. 7; left blue curve).

Another way in which a FSN bifurcation can occur is via
a true transcritical bifurcation of folded singularities. That is,
for μ > 0, there is a folded node on L+ and a folded saddle
on the V axis. At μ = 0, the folded node and folded saddle
coalesce, and for μ < 0, the folded singularity on L+ is a
folded saddle whereas the folded singularity on the V axis
is a folded node. The slow flow around the folded node on
the V axis is directed away from the V axis, and so EADs
will not be observed. Thus, for μ < 0, orbits of the slow flow
encounter regular fold points on L+, and the corresponding
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FIG. 8. The restitution curve is smooth when EADs are elimi-
nated by (a) increasing the maximal conductance of K+ channels
(gK = 0.12 mS/cm2), or (b) decreasing the magnitude of the Nernst
potential of K+ channels (gK = 0.07 mS/cm2 and VK = −75 mV).
The APD versus PCL diagrams show a single branch corresponding
to 10 APs [cf. Fig. 2(e)].

rhythm exhibits regular APs (without EADs). Hence, this FSN
bifurcation corresponds to the transition between EADs and
regular APs (Fig. 7; right blue curve).

The two-parameter diagram (Fig. 7) illustrates that, in this
model, there is a large set of gK , VK parameters in which
EADs can be produced. Thus, the behavior is generic, not
limited to small regions of parameter space. It also illustrates
the precision that GSPT provides in the determination of
when EADs are possible, and the maximum number of EADs
that are possible. Finally, it shows that decreasing the K+
conductance, as is done with drugs like azimilide that act
as K+ channel antagonists, can induce EADs (thick leftward
arrow). Also, increasing the magnitude of the K+ Nernst po-
tential, as in hypokalemia, can induce EADs (thick downward
arrow). These observations are consistent with experimental
studies [1,2,5]. Another prediction is that some manipulations
can have biphasic responses. For example, reduction of K+
conductance can take the model cell from a region of AP gen-
eration to a region of APs with EADS, but further reduction of
the conductance can restore regular APs (inside the red curve
in Fig. 7). To our knowledge, a systematic reduction of K+
conductance using a tool such as the Dynamic Clamp has not
been performed, as would be needed to test this prediction.

Figure 2(e) showed that when the model cell produces
EADs the restitution curve (response of AP duration to
changes in PCL) is complex. The restitution curve becomes
much simpler when there are no EADs. Figure 8(a) shows
that when gK is increased so that the system lies within the
right AP region of Fig. 7 (right asterisk) the AP duration
increases smoothly with PCL. Similarly, when VK is reduced
in magnitude so that the system lies in the upper AP region
of Fig. 7 (left asterisk), the AP duration increases smoothly
with PCL [Fig. 8(b)]. Hence, the complex response of the
model cell to changes in PCL is due to EADs, and a manip-
ulation that eliminates EADs results in a much more regular
behavior.

C. Periodic stimulation and mixed-mode oscillations

We established that EADs originate from canard dynamics
around a folded node, and that the canards organize the
EADs in both phase and parameter space. We now restore
the periodic stimulation and study the stimulus-driven EAD
attractors. Our aim is to explain the bifurcation diagram in
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FIG. 9. Geometric mechanism for the stimulus-driven 12 at-
tractor � (thick black and cyan). Parameters are set at those in
Fig. 2(a) with PCL = 1200 ms. (a) Comparison of � to the slow flow
(thin black) and geometric structures. The stimulus (cyan segment)
induces a transition from the hyperpolarized sheet to the funnel
(shaded) of FN. (b) Comparison of � to the slow manifolds; � lies in
the sector between γ1 and γ2, and thus has two EADs.

Fig. 2. We will show that the variety of AP morphologies
exhibited under various PCLs can be explained by the canards.

1. High- and low-frequency pacing: Canard-induced
mixed-mode oscillations

Recall that when there is periodic stimulation Isti, the
system entrains to the driving oscillator. For low PCLs (i.e.,
high-frequency pacing), the attractor is a 12 AP with EADs
[Figs. 2(a) and 2(e)]. Using the results of our geometric
analysis, we deconstruct the 12 rhythm (Fig. 9) and find that it
consists of the following:

(i) canard-induced EADs around the folded node due to
twisted slow manifolds;

(ii) a fast transition from the depolarized folded node
region to the hyperpolarized slow manifold; and

(iii) a stimulus-driven transition from the hyperpolarized
slow manifold to the depolarized slow manifold.

Note in Fig. 9(a) that the weak canard is approximately
given by the stable manifold of the (cyan) saddle, and that the
EADs are centered on this weak canard (i.e., the weak canard
is the axis of rotation).

The periodic stimulus provides the mechanism for return-
ing orbits to the neighborhood of the folded node. More
specifically, the stimulus switches “on” during the slow hy-
perpolarized segment of the trajectory. This drives the orbit
away from the hyperpolarized sheet and into the basin of
attraction of the depolarized sheet Sa,+

ε . The timing of the
stimulus is such that the orbit is injected into the rotational
sector enclosed by the maximal canards γ1 and γ2, and
hence exhibits two EADs. This combination of a local canard
mechanism (for the EADs) and a global (stimulus-induced)
return mechanism is known as a canard-induced mixed-mode
oscillation (MMO) [48].

Similarly, for large PCLs (i.e., low-frequency pacing), the
stimulus-driven 13 attractor is a canard-induced MMO with
period set by the PCL [Figs. 2(d) and 2(e)]. The 13 MMO
attractor consists of (local) canard-induced EADs around the
folded node combined with a global stimulus-driven return
that projects orbits from the hyperpolarized sheet into the
rotational sector enclosed by the canards γ2 and γ3 (Fig. 10).

FIG. 10. Local and global mechanisms for a stimulus-driven 13

attractor � (thick black and cyan). Parameters are as in Fig. 2(d) with
PCL = 1500 ms. (a) Comparison of � to the slow flow (thin black)
and geometric structures in the (V, n) projection. (b) The orbit is
injected into the sector delimited by the canards γ2 and γ3, and hence
exhibits three EADs.

2. Intermediate-frequency pacing: EAD alternans due to
reinjection into adjacent rotational sectors

In Fig. 2(e), we found a band of intermediate pacing
frequencies for which the stimulus-driven attractor is a 1213

alternator [e.g., Fig. 2(b)]. We compare the 1213 attractor to
the underlying geometric structures in Fig. 11. As in the low-
and high-frequency forcing cases, the 12 and 13 segments are
each canard-induced MMOs. The difference here is that the
timing of the stimulus is such that the orbit visits different
(contiguous) rotational sectors on each stimulus pulse.

The 1213 alternans attractor � = �2�3 decomposes as fol-
lows. Starting on the hyperpolarized sheet, the first stimulus
pulse [Fig. 11(a); leftmost cyan segment] projects the orbit
into the sector enclosed by γ2 and γ3, so it exhibits three EADs
[Fig. 11(b); �3]. The orbit then transitions to the hyperpo-
larized sheet where it drifts towards the firing threshold L−.
Before it can reach L−, the next stimulus pulse [Fig. 11(a);
rightmost cyan segment] projects the orbit into the sector
enclosed by γ1 and γ2 [Fig. 11(b); �2], and thus � exhibits
two EADs. The orbit then returns to the hyperpolarized sheet
where it again slowly drifts towards L−. Since �2 only has
two EADs, the APD is shorter (compared to �3) and the
corresponding diastolic interval (DI) is longer. As such, the

FIG. 11. Geometric mechanism for stimulus-driven 1213 alter-
nans, � = �2�3. Parameters are as in Fig. 2(b) with PCL = 1300 ms.
(a) Comparison of � to the slow flow (thin black). The stimulus
(cyan) projects � into the funnel at different locations, causing �

to visit different rotational sectors. (b) � alternately enters the sector
between γ1 and γ2 (two EADs), and the sector between γ2 and γ3

(three EADs).

052205-9



THEODORE VO AND RICHARD BERTRAM PHYSICAL REVIEW E 99, 052205 (2019)

FIG. 12. Sensitivity of the EADs near a maximal canard. The
cause for the variability in the number and magnitude of the EADs
is that � peels off γ2 at different times. Parameters are as in
Fig. 2(c) with PCL = 1200 ms. (a) Projection of the 12(13)3 attractor,
�, into the (V, n) plane. (b) The orbit stays close to the maximal
canard γ2 on each return to Sa,+

ε . (c) Zoom of the (V, n) plane where
the stimuli are applied. (d) Zoom of the EADs as they peel off γ2.
(e) Time series of �2 and �3 j for j = 1, 2, 3. The APD (DI) is
the time spent above (below) the (dashed purple) threshold V =
−70 mV.

orbit is able to drift further along the hyperpolarized sheet
before the next stimulus occurs. Once the stimulus “switches
on,” the process repeats periodically, thus producing the 1213

attractor. Hence, at this intermediate stimulus frequency there
is an alternation between two different points on the hyperpo-
larized sheet at which the stimulus is applied, and from these
positions the orbits enter adjacent rotational sectors on the
depolarized sheet, resulting in two alternating EAD profiles.

3. Intermediate-frequency pacing: Dynamical chaos and
intermittency due to sensitivity near maximal canards

In Fig. 2(e), we found a band of pacing frequencies for
which the model exhibited seemingly chaotic and intermittent
behavior. We show, for a representative 12(13)3 attractor �,
that the complex signatures arise from the crossing of a
maximal canard (Fig. 12). As before, each AP with EADs is
a canard-induced MMO. The variability in the number and
magnitude of the EADs is due to the stimulus, which perturbs
the orbit from the hyperpolarized sheet at different locations
on each pulse.

Let �2 denote the 12 segment of �, and �3 j, j = 1, 2, 3
denote the 13 segments of �, i.e., � = �2 ∪ �31 ∪ �32 ∪ �33.
Starting with �2, the stimulus [Fig. 12(c); cyan] induces a fast
transition to the depolarized sheet close to γ2 in the sector
between γ1 and γ2 [Fig. 12(b)], and hence there are two EADs.

The intrinsic dynamics of the model cell return �2 to Sa,−
ε

where it drifts to smaller n. The next stimulus initiates �31

and projects the orbit into the sector bound by γ2 and γ3.
The additional EAD in �31 extends the APD compared to
that of �2 [Fig. 12(e)]. As such, the DI of �31 is shorter than
that of �2. This means �32 is initiated on Sa,−

ε at a larger
n value [Fig. 12(c)], and enters Sa,+

ε closer to γ2. Since �32

follows γ2 more closely than �31, the (i) EADs are larger
amplitude [Fig. 12(d)], (ii) APD is longer, and (iii) DI is
shorter. Consequently, �33 is initiated on Sa,−

ε at a larger n
value, enters Sa,+

ε closer to γ2, and hence exhibits the (i)
largest EADs, (ii) longest APD, and (iii) shortest DI.

The other complex MMO signatures in Fig. 2(e) emerge
by the same mechanism. That is, the (12)p(13)q attractors
for p, q ∈ N arise because the PCL is such that the orbit
enters the depolarized sheet close to the maximal canard γ2.
Since the behavior of trajectories near a maximal canard is
exponentially sensitive [36], small changes in PCL manifest
as significant changes in the number, amplitude, and duration
of EADs on each pulse. Likewise, at such PCL values, small
changes in initial conditions have large effects on the V time
course, the hallmark of chaos.

IV. DISCUSSION

It has been previously demonstrated that early
afterdepolarizations produced by a simple cardiomyocyte
model [2], a reduction of the Luo-Rudy 1 (LR1) model [37],
are the consequence of carnard dynamics in the vicinity of
a folded node [31], a result further illuminated through the
geometric analysis shown in Figs. 3 to 6. We show that these
dynamics are robust in (gK ,VK ) (Fig. 7). These parameters are
chosen since they can be modulated by drugs or environment;
gK is reduced by K+ channel antagonists such as azimilide,
while VK is increased in magnitude in hypokalemia. Figure 7
predicts that both manipulations can induce EADs, and
indeed both manipulations have been shown to do this in
experiments [1,2,5].

Our second set of results involves the paced system, which
receives periodic depolarizing stimuli (Fig. 2). Each pulse
pushes an orbit into the basin of attraction of the depo-
larized sheet, triggering an action potential that can be a
mixed-mode oscillation if EADs are produced. For high- and
low-frequency pacing, orbits land in the rotational sectors
delimited by maximal canards and stay far from the maximal
canards, so that the voltage time course exhibits regular, peri-
odic behavior. At high stimulus frequencies, the orbits land in
the sector between γ1 and γ2, so each AP has two EADs. At
low stimulus frequencies, the orbits land in the sector between
γ2 and γ3, so each AP has three EADs. The number of EADs
depends on the rotational sector in which the orbit lands in
response to the stimulus (Figs. 9 to 12). The EAD alternans
observed for intermediate frequencies emerge because the
stimulus alternately projects the orbit into different sectors on
each pulse. In some cases, the outcome can be complex, with
a sequence of MMOs of different durations and numbers of
EADs. This behavior was referred to as “dynamical chaos” in
earlier publications [2,23].

The LR1 (and reduced LR1) model is a three timescale
system with fast voltage dynamics, intermediate activa-
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tion dynamics for the K+ channels, and slow inactivation
dynamics for the L-type Ca2+ channels. Prior slow-fast anal-
yses [2,23,27,30] were performed treating V and n as fast,
and h as slow. EADs were shown to arise from delayed Hopf
bifurcations [51]. While this 1-slow-2-fast approach explains
certain aspects of EADs, it cannot predict the number (i.e., du-
ration) of EADs nor explain why EADs change with PCL. The
2-slow-1-fast approach taken here fills these gaps. It explains
the origin of the EADs in terms of twisted slow manifolds and
folded node canards, and explains how the AP morphologies
change with parameters and PCLs. To reconcile the comple-
mentary and nonoverlapping results from the 2-fast-1-slow
and 1-fast-2-slow approaches, a three timescale analysis needs
to be done. Such analyses were performed in three timescale
models of pituitary lactotrophs [52,53]. We conjecture that the
delayed Hopf bifurcation of the 1-slow-2-fast approach and
the folded node of the 2-slow-1-fast approach are different
unfoldings of a more degenerate singularity that can only be
revealed by three timescale analysis. We leave this to future
work.

The advantage of the minimal model for the analysis
presented here is its low dimensionality. More realistic car-
diomyocyte models can have 40 or more dimensions, re-
flecting many types of ionic currents and in many cases
equations for Ca2+ handling in the cytosol, the sarcoplasmic
reticulum (SR), and the subspace between the SR and the
cell membrane [22,54–57]. One major advantage of these
larger models is that they have more biological detail that
allows for simulation of, for example, the application of
pharmacological agents that act as antagonists for specific
types of ion channels, such as inward-rectifying K+ chan-
nels, while the minimal model incorporates only a single
type of K+ current and a single type of Ca2+ current. With
the correct parametrizations, these more complete models
are capable of reproducing the various forms of EADs that
were characterized, each with different, but partially overlap-
ping, biophysical mechanisms [58], while the minimal model
was developed to produce EADs of a particular type. EADs
are divided broadly into types according to the timing of the
events: “phase-2 EADs” occur during the plateau of an elon-
gated AP, and “phase-3 EADs” occur during the falling phase
of the AP. There are also “depolarizing afterdepolarizations”
that occur after the completion of the AP. Our analysis on a
minimal model suggests that the dynamics underlying some
phase-2 EADs are canard-induced, and we speculate this will
be the case in more complete biophysical models. While the
full slow or fast analysis done with the minimal model is
not possible with the high-dimensional models, it is possible
to perform a less complete analysis, such as determining
the existence of folded node singularities. Indeed, such an

analysis is important for establishing that canard dynamics are
the basis of phase-2 EADs in more complete models, and is
currently being undertaken by our group.

Why does it matter whether EADs are due to canard
dynamics near a folded node singularity? Although it sounds
abstract, the ramifications of knowing this can be important
and useful. As we demonstrate, if the EADs are associated
with a folded node, then one can simply analyze the eigenval-
ues of the desingularized reduced system at the folded node
to determine how many EADs are possible, at least when
the system is near the singular limit as it is in this model.
One can also determine parameter changes that enhance or
eliminate EAD production. In particular, one can determine
regions of parameter space where canard-induced EADs are
not possible, without the need to perform any numerical
integrations (as in Fig. 7 and [31]). So once EADs are linked
to folded nodes, one gains a great deal of predictive capability.
In addition to this, knowing the dynamical mechanism for
the EADs helps in the understanding of complex behavior,
such as dynamical chaos, that would be hard or impossible
to understand from the viewpoint of interacting ionic currents
(i.e., a biophysical interpretation). Knowing which ion chan-
nels are key players in EADs is of course important, and can
provide targets for pharmacological or genetic manipulation,
but the complexity of the multiscale nonlinear dynamical
system provides limitations to interpreting behavior without
mathematical tools such as GSPT.

The theory of folded singularities has been applied to
numerous systems. This includes intracellular Ca2+ dynam-
ics [59], the electrical activity of neurons [60–62] and pituitary
cells [53], and MMOs that are likely canard-induced were ob-
served in the oxidation of platinum [63], dusty plasmas [64],
and chemical oscillations [65,66]. The demonstration that
some forms of EADs are canard-induced in a minimal car-
diomyocyte model adds cardiac cells to the growing list of
the biological and chemical systems whose dynamics are
organized by folded singularities. Our system is different,
however, in that it is periodically forced under physiological
conditions, where the forcing is initiated at the sinoatrial node.
As we demonstrate here, this forcing can lead to complicated
dynamics due to the injection of the orbit into different rota-
tional sectors, so that the number of EADs produced following
each stimulus can vary. The result can appear to be unpre-
dictable, and chaotic, and sensitive to small changes in the
forcing frequency and initial conditions. Whether this com-
plex behavior is exhibited in a physiological setting, within
an intact heart, is unclear. It is generally accepted that EADs
can lead to arrythmias [9,16–18], including ventricular tachy-
cardia, but it has not been established that complex, chaotic
behavior at the single myocyte level contributes to this.
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