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ABSTRACT Mathematical models are increasingly important in biology, and testability is becoming a critical issue. One
limitation is that one model simulation tests a parameter set representing one instance of the biological counterpart, whereas
biological systems are heterogeneous in their properties and behavior, and a model often is fitted to represent an ideal average.
This is also true for models of a cell's electrical activity; even within a narrowly defined population there can be considerable
variation in electrophysiological phenotype. Here, we describe a computational experimental approach for parameterizing
a model of the electrical activity of a cell in real time. We combine the inexpensive parallel computational power of a program-
mable graphics processing unit with the flexibility of the dynamic clamp method. The approach involves 1), recording a cell’s
electrical activity, 2), parameterizing a model to the recording, 3), generating predictions, and 4), testing the predictions on the
same cell used for the calibration. We demonstrate the experimental feasibility of our approach using a cell line (GH4C1). These
cells are electrically active, and they display tonic spiking or bursting. We use our approach to predict parameter changes that

can convert one pattern to the other.

INTRODUCTION

Mathematical models have become essential tools for
understanding complex biological systems. Models are
used to formulate hypotheses that can be tested through
simulations and can generate new predictions that will in
turn be tested experimentally. One limitation of this process
is that simulations only test one set of parameter values,
whereas biological systems such as cells often form hetero-
geneous populations, so a single parameter set may not be
representative of many of the individuals in a population.
However narrowly we try to define a cell population, it
seems that substantial heterogeneity remains. For example,
pituitary lactotrophs exhibit significant heterogeneity in
calcium influx and electrophysiological characteristics
(1-3), even within functional subtypes (4). When different
parameters are measured in different cells and then aver-
aged, this can lead to an average model that may represent
only a subpopulation of cells or, in the worst case, none at
all. The behavior of the average model may not represent
the average behavior in the cell population (5-7).

One way to overcome this problem is to use tools of
dynamical systems theory, such as bifurcation diagrams,
to obtain a qualitative understanding of how the system’s
dynamics change as parameters are varied (8). A second
approach, akin to sensitivity analysis, is to simulate thou-
sands or millions of models built from different parameter
combinations, to understand how groups of parameters
can compensate each other’s variations and produce a given
behavior (9,10). Although these approaches have provided
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great insight into biological systems, neither provides an
accurate mechanistic description of single individuals in
a population.

An ideal scenario would be to measure a cell’s activity,
build a dynamical model of that cell, and then test the
model’s predictions on the same cell. Only then might we
be able to fully understand how differences in parameter
values translate into differences in cell behavior.

Here, we consider anterior pituitary cells that spontane-
ously produce patterns of electrical activity. Pituitary lacto-
trophs and somatotrophs spontaneously generate patterns of
Ca”"-dependent spikes and bursts. Bursts create large intra-
cellular Ca®" transients that are thought to underlie basal
hormone secretion (11). We use the GH4C1 lactosomato-
troph cell line. These cells generate spiking or bursting
activity patterns, with large cell-to-cell variations in electrical
activity. What differences in parameters, such as ion channel
conductances, underlie the differences in electrical activity
patterns? To answer this question, we have developed an
approach for testing models of electrical activity on the
same cells used to calibrate the model. To do so, we used
the parallel processing capability of a programmable graphics
processing unit (GPU) that is available at a low cost, and the
flexibility of the dynamic-clamp protocol (12,13).

In the following sections, we first show that a simply built
model whose electrical activity qualitatively matches spon-
taneous experimental activity cannot always be used to
generate useful predictions, a point demonstrated experi-
mentally in an invertebrate central pattern generator (14).
We then describe the strategy used to estimate the parame-
ters of our model and use synthetic data to explore the rela-
tionship between the fitness of the best-fit model and the
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proximity of its parameters to those of the model used to
generate the data. It is important to note that we test the
ability of the best-fit model to generate qualitative predic-
tions when some parameters are set to an incorrect value
or one conductance is missing from the model. Finally, we
test the procedure on actual cells. We first record sponta-
neous activity from a cell, from which we extract features
that the model must reproduce. We also measure whole-
cell currents generated in response to voltage steps. From
this information, we estimate a subset of the parameters of
our model of pituitary electrical activity.

The computational speed of the GPU allows the estima-
tion process to be completed in 10 min. Therefore, the
vast majority of the cells we record from are still healthy
at the end of the calibration and can be used to test model
predictions. We show how fits obtained from spiking and
bursting cells can be used to predict parameter changes
that can switch the electrical activity pattern from spiking
to bursting, or vice versa. We then perform such parameter
changes experimentally, using the dynamic-clamp tech-
nique on the same cells that were used to calibrate the
model. Despite the simplicity of our model, we show that
it can generate novel predictions that can be tested directly.
Thus, we demonstrate that the combination of mathematical
modeling, fast parallel processing provided by a GPU, and
the dynamic-clamp technique can overcome modeling limi-
tations due to cell heterogeneity.

MATERIALS AND METHODS
Mathematical model

We use a previously developed mathematical model for the electrical activity
and Ca®" handling in a pituitary lactotroph (15). It consists of voltage-gated
Ca?" and K currents (I, and I, respectively) for the production of action
potentials, a leak current, and a Ca*"-activated K* current (Isg, a small-
conductance K(Ca) current). A voltage-dependent current through large-
conductance K* channels (BK channels) is also included. Although these
BK channels are both voltage- and Ca®"-gated, they are typically located
adjacent to Ca>" channels and are gated by Ca>" nanodomains (16). Because
the Ca®>" concentration sensed by the BK channel reaches equilibrium in
microseconds, the activation can be modeled as a purely voltage-dependent
process (17,18). The following equations describe the dynamics of the model
variables V (membrane potential), n (activation of Ix), b (activation of Izx)

and [Ca] (intracellular Ca>* concentration):
dv
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with ionic currents Icq = gcame (V)(V — Vea),
Isk = gsxS=([Ca])(V — Vi), Ipx = gpxb(V

11( = gKn(V b VK),
VK)v and I[('ak = glmk(V—

View), and steady-state functions ma, (V) = [1 + exp((vp — V) /sm)] ">
e (V) = [+ exp((va = V)/s)] ™', sw([Cal) = [Ca)*/[Cal* + K2, and
be (V) = [1+exp((vp — V) /sp)] "

Default parameter values are given in Table 1. Most simulations were run
on a GPU using custom code. The simulation package XPPAUT (19)
was used to run single instances of the model (forward Euler method,
dt = 0.005 ms). Computer codes for this model are freely available at
www.math.fsu.edu/~bertram/software/pituitary.

Feature-based fitness function

We used features of the recorded electrical activity trace to create a
fitness function that is optimized to calibrate model parameters (20).
First we select a voltage trace (usually a few minutes of electrical
activity) and then extract features that represent its shape. The features
used in this study were the minimum voltage achieved during the trace,
the difference between the minimum and the maximum (amplitude), the
period of the oscillation (either spiking or bursting), and the ratio of the dura-
tion of the silent phase to the period. We computed a silent phase as the time
within a period during which the voltage lies below a threshold 7= min(V) +
0.35(max(V)—min(V)). For bursting cases, we also used the number of peaks
in a burst and the sum of the peak amplitudes as features. The fitness is
computed with a Gaussian distance function that uses the extracted features
as targets or optima. The fitness of a model is then

opt;
d_¢exp (f/ P )

J
w = S ; ®)
J

where ¢; represents the contribution of feature j to the overall fitness, f;
and opt; are the computed and target features, respectively, and o; is the
reciprocal strength of selection on that feature (small values represent
strong selection). The sum in the denominator scales the computed
fitness between O and 1. A value of 1 indicates a complete agreement
between the features extracted from the target voltage trace and those
extracted from the best-fit trace. For all simulations, the values used
for the fitness coefficients, ¢, and selection strengths, o, were min(V),
c=2and ¢ = 10 mVZ; amplitude, ¢ = 2 and ¢ = 10 sz; period,

=4 and ¢ = 50 msz; silent/period ratio, ¢ = 2 and ¢ = 0.025;
burst-peak number, ¢ = 1 and ¢ = 1; burst-peak amplitude, ¢ = 1
and ¢ = 1 mV>%

With voltage-clamp data, the fitness function was modified to

w = 6eratures + (1 - 6)W(:lamp; (6)
with
([i.model - Ii (:ell)z
RMSE = ’ : 7
2 yrR— ™
and
—RMSE?
Welamp = €XP (7)7 ®)
az'lan1p

where the summation is over the number of different test potentials,
L moder and I; ..y are equilibrium currents in the model and the cell,
respectively, and the rescaling constant kr is 1 pAZ. Parameter § is
between 0 and 1 and adjusts the relative weight given to features versus
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TABLE 1 Parameter values used in the simulations, unless otherwise noted

Parameter Min Default value Max Definition

C 5 10 pF 15 Membrane capacitance

gca 0.5 2nS 5 Maximal conductance of Ca®>" channels
Vea 60 mV Reversal potential for Ca*"

Vin -30 —20 mV -10 Voltage value at midpoint of 7

S 2 12 mV 24 Slope parameter of m

gK 0.5 4 nS 8 Maximal conductance of K channels
Vi —75 mV Reversal potential for K+

Va -10 -5 mV -1 Voltage value at midpoint of 7

Sn 2 10 mV 20 Slope parameter of 14

T, 10 20 ms 30 Time constant of n

sk 0.5 2 nS 6 Maximal conductance of SK channels
kg 0.1 0.4 uM 1 [Ca] at midpoint of s

8BK 0 0.1 or 0.8 nS 4 Maximal conductance of BK channels
Vp —20 mV Voltage value at midpoint of b

Sp 2 mV Slope parameter of b

T 1 5 ms 10 Time constant of b

8leak 0.05 0.2 nS 0.3 Leak conductance

Vieak —50 mV Reversal potential for the leak current
gA 0 0nS 40 Maximal conductance of A channels
Va —20 mV Voltage value at midpoint of g

Sq 10 mV Slope parameter of d

Vi —60 mV Voltage value at midpoint of /1

Sp 5 mV Slope parameter of /14

T 20 ms Time constant of &

fe 0.01 Fraction of free Ca®* ions in cytoplasm
« 0.0015 uMfC™! Conversion from charges to molar concentration
k. 0.01 0.12 ms™" 0.4 Rate of Ca>" extrusion

voltage-clamp currents in the model calibration (we used 0.7),
etamp = 500 mV2.

Strategy for model calibration

To calibrate the parameters of the model to match the voltage trace of a cell
we developed custom software written in C# and interfaced with a program-
mable GPU (CUDA parallel computing architecture, NVIDIA, Santa Clara,
CA) using OpenCL. The GPU can simultaneously run simulations of
thousands of different individuals, corresponding to renditions of the model
with different parameter combinations. The forward Euler method was used
to integrate the equations with a time step of 0.005 ms. To accelerate the
process we also evaluated the features of each individual using the GPU.
The features were scored during the second half of the simulation, thus
ensuring that transients were eliminated. Each parallel set of simulations
is referred to as a generation.

We chose 4096 initial sets of parameters using a Latin hypercube
sampling scheme (21), a statistical method to generate a distribution of
parameter values from a multidimensional distribution. The parameter
ranges used to generate the initial distribution are given in Table 1. Each
individual model is simulated for 10 s of electrical activity and receives
a fitness score. The best 32 models are used for the next generation. We
use these 32 parameter combinations to form 32 blocks of models. The
parameter sets for the next generation are generated by creating 128 repli-
cates of each model in each block. We leave one replicate unchanged and
mutate the other replicates. This guarantees that we always carry the best
32 parameter combinations to the next generation. The size of a mutation
was randomly drawn according to a normal distribution centered at the
value of each parameter and with standard deviation ¢ (we used 0.1).
Altogether, this forms 128 x 32 = 4096 model cells. Setting parameters,
simulating, and scoring each model takes a little more than 1 min/genera-
tion (using an NVIDIA GeForce GTX 560 GPU), and typically 10 genera-
tions were sufficient to achieve a good fit.

Cell preparations and perforated patch
recordings

GHA4C1 cells were obtained from ATCC (Manassas, VA) and maintained in
culture conditions in supplemented F10 medium (Sigma-Aldrich, St-Louis,
MO) according to established procedures (22). During the experiment, cells
were superfused with Hepes-buffered saline (138 mM NaCl, 5 mM KCl,
10 mM «a-D-glucose, 25 mM HEPES, 0.7 mM Na,HPO,4, 1 mM MgCl,,
and 2 mM CaCl,) at room temperature. Fire-polished pipettes (resistance
6-9 MOhm) were filled with intracellular solution containing 90 mM
KAsp, 60 mM KCl, 10 mM HEPES, 1 mM MgCl,, and 120 ug/ml ampho-
tericin B. Access resistance usually decreased to <50 MQ within 10 min
after seal (>5 GQ) formation. A junction potential of 6.5 mV was not
corrected; an undischarged Donnan potential also exists across the perfo-
rated membrane, but it is assumed to be negligible. Bath application of
1 uM paxilline (Tocris, Ellisville, MO) or 100 nM iberiotoxin (Tocris)
was used to block BK channels. Note that the perforated patch configuration
is critical to perform parameter estimation and model testing on the same
cell, because in whole-cell mode, Ca®* currents responsible for electrical
activity run down after a few minutes.

Dynamic clamp

Membrane potential was monitored in current clamp (bridge mode) and
acquired from the patch amplifier (Multiclamp 700B, Molecular Devices,
Sunnyvale, CA) through an analog-to-digital acquisition card (DAQ) on
a separate PC running the software QuB with a dynamic-clamp module
(23). Membrane potential (V) was used to compute the current to be injected
using the same mathematical expression as for the model simulations. For
example, for the BK current, we computed Igx = gpx b (V — Vi), with b
obtained by integrating Eq. 3. This calculated current was injected into
the cell through the same DAQ. The equations to compute the currents
were evaluated in real time using the forward Euler method (23), with an
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average time step of dt = 54 us, maximum = 100 us, and coefficient of
variation <1.2.

RESULTS

Models exhibiting similar spontaneous activity
can respond very differently to conductance
changes

When building a cellular model, usually we combine avail-
able experimental data (such as types of channels present on
the cells and channel kinetic rates) with our intuition to
produce a set of equations that matches the cell’s electrical
activity (such as firing rate or pattern). However, models
with different parameter sets can produce similar behavior
(9,24). If these parameter sets occupy different regions in
parameter space, then changes in some parameters (typi-
cally the maximal conductances of the various ionic
currents) may result in different qualitative changes in the
electrical activity pattern. In other words, models that
produce similar activity patterns often predict different
changes in activity after changes in parameters (14). This
is particularly relevant for pituitary cells, since the distribu-
tion and properties of ion channels vary among cell types
and even within the same cell type, depending on physiolog-
ical conditions. Thus two cells that exhibit a similar activity
pattern might have different reactions to a change in
parameters.

Tomaiuolo et al.

We illustrate this in Fig. 1. First we choose three param-
eter sets (Table 2) that result in tonic spiking. These sets
have different values for five maximal conductances: an
L-type Ca®" current (g¢,), a delayed-rectifying K current
(gx), an SK-type K* current (ggx), a BK-type K* current
(gx) and a leak current (gs..c). A list of the remaining
parameters and their values is given in Table 1 (default
values). These individuals represent different electrically
excitable cells, characterized by different locations in
parameter space, yet all exhibit tonic spiking.

We start with model cell A (Fig. 1 A a) by increasing g.,
by 1 nS (Fig. 1 A b) and observing the effect. We then repeat
the process with ggx (Fig. 1 A c¢). Neither modification
results in a qualitative change in the tonic spiking pattern;
the spike frequency and amplitude are altered, but the
spiking pattern persists. We then apply these changes to
model cell B (Fig. 1 B, a—c), which has different values
for the five maximal conductances listed above. In this
case, increasing gc, by 1 nS again has no qualitative effect
on the tonic spiking pattern, whereas increasing ggx by 1 nS
converts the tonic spiking pattern to a bursting pattern that is
characteristic of pituitary somatotrophs (25) and lactotrophs
(26). The opposite is true for model cell C (Fig. 1 C, a—c), in
which increasing gc,, but not gz, results in a change from
tonic spiking to bursting.

This example illustrates how cells producing similar
spiking patterns can behave very differently in response to

Aa Ab +1 nS 9., Ac +1 nS *
0 0 0
S
E 40 -40 -40
>
-80 -80 -80
0 2 4 0 2 4 0 2 4
Ba Bb Bc
0 0 0
N
£ -40 -40 -40
>
-80 - -80 -80
0 2 4 0 2 4 0 2 4
Ca Cb Cc
0 T 0 0
N
£ -40 -40 -40
>
-80 - -80 - -80 -
2 4 2 4 0 2 4
time (sec) time (sec) time (sec)
FIGURE 1 Model calibration is important for reliable predictions. Three different combinations of the conductances gc,, gk, &sk> k> and g.qx are used in

the model (Table 2), with each combination producing tonic spiking. With the first parameter set (model A), increasing gc, (Ab) or ggx (Ac) by 1 nS does not
affect the tonic spiking. With the second parameter set (model B), increasing gpx (Bc) results in a transition to bursting, but increasing g, (Bb) does not.
Using the third parameter set (model C), an increase in gc, (Cb) results in a transition to bursting, but an increase in gzx (Cc) does not.
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TABLE 2 Parameter values used for Fig. 1

8ca 8k 8sKk 8BK 8leak
Model A 2.36 5.64 3.14 1.91 0.16
Model B 3.80 5.57 3.13 2.06 0.29
Model C 2.38 4.08 2.61 0.15 0.24

All conductance values are expressed in nS.

changes in one or more conductance. Therefore, predictions
made for the different individuals (e.g., that increasing Ca*"
conductance should convert tonic spiking to bursting) would
be different. If tested on an actual cell, the outcome of the
test would depend on how well the dynamical properties
of the chosen cell match those of the individual used to
make the prediction. Our goal is to build a cellular model
such that the actual cell and the model are in similar regions
of parameters space, so they react similarly to parameter
changes.

A new process for model building and testing

The typical process for model building and testing begins
with data collection, often from experiments performed on
several cells (Fig. 2 A, cells A, B, C, etc.), and often from

Current Strategy

electrode

Cell

*0px

fit
—p data —I> model —Jp prediction

Time: days, weeks or months
B BN BN BN BN N N N

electrophysiology
experiment

model calibration and testing are decoupled

New Strategy

electrode

Cell

electrophysiology
experiment

fit
—p data (ﬁ} model —Jp prediction

Time: mere minutes!

-llllllllllllll nnnn

model calibration and testing are coupled
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different laboratories. The collected data represent a patch-
work of results describing the behavior of a cell type, and
they are compiled into a model. The model usually reflects
the properties of an average or representative cell, assuming
all the caveats associated with average/representative
models (6,10,27). Once a calibrated model is developed,
one or more predictions are generated. In the example in
Fig. 2 the prediction is that an increase in the maximal
BK conductance will change the cell’s electrical activity
from tonic spiking to bursting. Finally, predictions gener-
ated by the model are experimentally tested. This testing
is done on cells other than those used to develop and cali-
brate the model. Even if the model’s activity resembles
the activity of the cells used to test its predictions, it may
correspond to a different location in parameter space and
thus react differently to conductance changes (Fig. 1).

Fig. 2 B illustrates our strategy for performing model cali-
bration and testing on the same cell. Before an experiment is
begun, a mathematical model is built, and parameter values
are set using available data. Parameters of the most interest
are then identified, either by a sensitivity analysis of the
model, or based on previously recorded experimental data.
These parameters of interest (typically the maximal conduc-
tances) are then subject to individual-cell calibration using

electrode

Cell

electrophysiology

’ experiment

FIGURE 2 Current and new strategies for
model calibration and predictions testing. (A)
With the current strategy, a model is tested on cells
other than those used for calibration. (B) With the
new strategy, the model is tested on the cell used to
calibrate it.

-
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a recording of the cell’s spontaneous electrical activity, as
discussed in Materials and Methods. This calibration
focuses on features of the voltage trace, such as period or
burst duty cycle, rather than on the noisy voltage time
course itself. The calibration can be done in ~10 min using
a GPU, which can run thousands of numerical simulations
simultaneously. The same process using a standard pro-
cessor would take approximately 20-30 times longer,
depending on the computer. When a best fit is found, predic-
tions are generated with this model and tested on the same
cell used to do the model calibration. A key element of
this process is the rapid optimization done with the GPU,
since it can be completed while the cell is still healthy.

Model calibration on synthetic data

Before illustrating the procedure with actual data, we
examine how fitting features of the voltage trace constrains
model parameters. That is, we determine how well we can
retrieve correct parameters using a fitting procedure based
on fitting features of the voltage trace, as well as fitting
current under voltage clamp. This is done with simulated
or synthetic data, since in this case the values of all
parameters used to generate the data are known. We
consider the calibration on two different types of simulated
electrical activity, tonic spiking and fast bursting, both of
which are common types of electrical activity in anterior
pituitary cells.

Tomaiuolo et al.

We first simulate the electrical activity using a reference
parameter set and extract the features that will represent
the set of target features. We then use Latin hypercube
sampling to generate 4096 model cells, with different
values of the maximal conductances gc., gx» &sk> &ax» and
8leak- We perform up to 10 generations of optimization to
find values for these parameters that best fit the features of
the reference voltage trace, as discussed in Materials
and Methods. The reference parameter sets used to
generate spiking and bursting are in Table 1 (default values).
Spiking was produced using a low BK conductance
(gaxk = 0.1 nS), and bursting was produced using a larger
value (ggx = 0.8 nS).

We examine the proximity of the best-fit parameters
to the target parameters used to produce the synthetic
spiking or bursting data. We define a distance measure as
(pi — pr)/pr, where p; is the estimated parameter and py
is the target value for that parameter. This measure is then
the fractional deviation from the target value. A value close
to zero signifies almost perfect accuracy, and a value of 1
signifies that the parameter estimated is 100% different
from the value of the target parameter.

Fig. 3 shows best-fit solutions for tonic spiking and
bursting. Fig. 3 A shows that the best-fit voltage trace
completely overlaps that of the target spiking trace; the
voltage-clamp currents match very closely (Fig. 3 B) and
the parameter distances from the targets (Fig. 3 C) are
minimal. The fit is as good and the parameter distances

A B C
gleak
gbk
gsk
gk
gca
-0.5 0 0.5
D F
gleak I
gbk I
gsk
gk
gca I
% 0.2 04 1% 0.1 02 -0.5 0 05
time (sec) time (sec) parameter distance

FIGURE 3 Calibration on synthetic data. (A and D) Target trace (solid line) and corresponding fit (open triangles) for tonic spiking (A) and bursting (D).
(B and E) Target voltage-clamp currents (solid lines) and corresponding fits (open triangles) for tonic spiking (B) and bursting (E). (C and F) Parameter

distances for spiking (C) and bursting (F).
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between the best-fit and target parameters are even smaller
in the case of a bursting model cell (Fig. 3, D-F). This
shows that the process of calibrating a model using features
of the voltage trace and voltage-clamp data can yield param-
eter combinations that successfully reproduce a target
voltage trace. Few generations are needed, because at each
generation we sample a wide region of the parameter space
using the parallel computational capabilities of the GPU.

We summarize the performance of the calibration process
for the spiking and bursting cells, with and without voltage
clamp, in Fig. 4. This figure shows, for the best-fit cell, the
fitness and the sum of the average absolute parameter
distances for the five parameters used in the fitting. The
parameter values for the best-fit bursting model cell are
closer to the targets (Fig. 4 B, second and fourth bars)
than those for the spiking cell (Fig. 4 B, first and third
bars), since the bursting pattern is more complex than the
spiking pattern, which places more constraints on the
parameters. The addition of voltage-clamp data to the cali-
bration process, as well as voltage-trace features, results in
a marginal improvement of the fit to the voltage trace
(Fig. 4 A), but a great improvement in the accuracy of the
parameter estimation (Fig. 4 B).

We next consider the relation between the number of
parameters to be estimated and the accuracy in estimating
them. First, we select the number, N, of parameters to be
estimated. We then randomly pick N parameters from all
the available model parameters. For each parameter chosen,
we define a search space within +90% of the default value
for that parameter. We then run the calibration process for
10 generations and retain the best-fit model. The process

2027

is repeated 10 times for each N. Synthetic bursting activity
was used as a target.

The results show, not surprisingly, that as the number of
parameters increases the quality of the fit decreases and
the accuracy in parameter estimation decreases. The
impact of increasing parameter number on the fit to the
features (Fig. 4 C (vertical axis starts at 0.85)) is much
less than the impact on the accuracy of the parameter esti-
mation (Fig. 4 D). However, even when 10 parameters are
fit, the mean parameter distance is only 0.4. Of course,
different parameters have different impacts on the
behavior of the system, as could be deduced by a sensi-
tivity analysis. Parameters with low sensitivity will be
harder to estimate than those with high sensitivity, but
errors in these parameters will have less impact on quali-
tative predictions.

Comparing predictive expectations

A model, however sophisticated, will never be exactly like
a real cell. There are channels and other cell components
not included in the model, and those components that are
included have varying degrees of simplification. The cali-
brated parameters will thus never be absolutely correct.
However, what matters most is that the model be complete
enough to make nontrivial, testable predictions. Here, we
examined whether the calibration process estimates param-
eter values sufficiently well that testable predictions can be
made.

We first established a way to compare how distinct
models differ in their ability to generate correct predictions.

A B
2 FIGURE 4 Accuracy of calibration depends on
” g the data used and the number of fitting parameters.
2 0975 = Each column represents the average of 10 fits. (A)
é % 1 Average fitness score for fits to tonic spiking,
bursting, spiking using voltage-clamp (VC) data,
and bursting using voltage-clamp data. (B) The
average parameter distance (sum of the absolute
0.95 0 distances for the five fitting parameters) is greatly
spiking  bursting  spiking  bursting spiking  bursting  spiking  bursting reduced when voltage-clamp data are used in the
*Ve o +VC *Ve o +ve fitting process. (C and D) Fitness and parameter
accuracy decline as the number of free parameters
c 1 <D D 1 is increased. For all fits, we used bursting with
voltage-clamp data. Each data point represents
0.8 the mean of 10 fits, with randomly chosen param-
0.95 eters to be estimated. For each parameter we
@ § 0.6 created a uniform distribution within *+90% of
fcj 8 its default value. (C) Fitness decreases as the
= 09 % 04 number of parameters increases. (D) Accuracy of
parameter estimation decays (absolute parameter
02 # distance increases) as the number of parameters
<I> to be estimated increases.
0.85 0
2 4 6 8 10 12 > 4 6 8 10 12
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For each of the six parameters (gcu, &k, &sk> &8k &ieak> and
Tpk), we increased its value by 50% in 40 simulated model
cells, and then determined whether the perturbation resulted
in a qualitative change of the electrical activity and if so, of
which nature (i.e., spiking to bursting, bursting to spiking, or
active to silent). This generated an array containing the
values of the qualitative changes for each perturbation in
each model cell, which we refer to as the predictive set.
The predictive set of the model cell used to produce
synthetic data (the target cell) can be compared with those
of fitted cells to determine the ability of the fitting process
to make correct predictions. The best possible case is that
of a calibrated model for which all six perturbations result
in a correct prediction. We considered several possible
scenarios to assess the predictive ability of the model with
the calibration procedure. For each scenario, we scored
the percentage of times when at least two, four, or all six
predictions were correct.

Scenario 1: No calibration

In the case of a tonically spiking target cell, we compared its
predictive set with the predictive set obtained by averaging

Tomaiuolo et al.

Scenario 2: Full calibration

The predictive sets of 40 target cells were compared to the
predictive sets of calibrated models with the same free
parameters as in the first scenario. In this case, the average
percentage of correct predictions (Fig. 5 A, Calibration) is
much higher than in the case of predictions made with the
uncalibrated models. About 75% of calibrated models
make 6/6 correct predictions.

Scenario 3: Missing current

In 40 target cells, we added a fast-inactivating A-type K*
current, /4, which is known to be present in some pituitary cells
(28) and can regulate the transition between spiking and
bursting (15,29). The I, current is described by the equations

IA = gAam(V)h(V—Vk), (10)

with inactivation variable / satisfying

dh
Th—,

o= he ()=, (11)

>20 models, each with five randomly chosen parameters ~ Where
(8ca» 8> 8sk> 8BK> and gi.q1), that exhibited tonic spiking. v—v)\1"
.o S . -V
A similar procedure was applied in the case of a bursting he (V) = {1 + exp <l>} (12)
. S

target cell. These tests on uncalibrated models enable us h

to establish a baseline for comparison with calibrated

models. The resulting set of predictions (Fig. 5 A CTRL) and

shows that only about one-third of uncalibrated models 1

can make 2/6 correct predictions (mean, u = 0.3; standard ax(V) = {1 + exp (M)] . (13)

deviation, o = 0.46). Sa

A B 1

l-=2/6
>=4/6
[Jere
0.8 0.8
= FIGURE 5 Predictions using different calibra-
tion scenarios. The vertical axis shows the fraction
of models with >2 (black), >4 (gray), and 6

% 06 06 (white bars) of 6 correct predictions. (A) First set

8- ’ of bars (CTRL) is for the case where no calibration

E _ was used. Second set of bars (Calibration) shows

9 the case where the calibration process was used

_5 to fit five parameters. Third set of bars (Missing

S 04 0.4 Current) refers to the case where calibration was

So .

&= _ _ used to fit five parameters but a current was
missing from the model. (B) CTRL bars refer to
no calibration, and all parameters were different
from the target. Second set of bars (Incorrect

0.2 0.2 Parameters) refers to the case where the calibration
procedure was used to fit five parameters.
0 0
CTRL Calibration Missing CTRL Incorrect
Current Parameters

Biophysical Journal 103(9) 2021-2032



Real-Time Model Calibration and Testing

In all target cells, g4 was set to 20 nS. We then ran the
calibration process on each of the selected cells, but without
including the added current. This scenario tests how well
predictions can be made even if the model lacks an ionic
current that is present in the cell. A significant fraction of
models were able to make some correct qualitative predic-
tions. However, the fraction of models making more than
4/6 correct predictions is considerably reduced in this
scenario (Fig. 5 A, Missing Current).

Scenatrio 4: Incorrect parameters

We ran the calibration process using five calibration param-
eters (gca &> &sk> &k> and g.41) after introducing changes
to all the other parameters (each is subject to a random
change of *10% of its value). The baseline for comparison
(the control) was generated as in Scenario 1: if the model
cell was spiking (or bursting), we compared its predictive
set with the predictive set obtained by averaging >20
randomly chosen model cells exhibiting tonic spiking (or
bursting), where each control cell had the same set of incor-
rect parameters as the set of calibrated cells. Fig. 5 B (CTRL)
shows that, with these uncalibrated test cells, very few
predictions match the prediction set of the target cells.
Thus, although the test cells match the spontaneous behav-
iors of the target cells, they lead almost uniformly to invalid
predictions. When the calibration procedure was applied to
the test cells (calibrating five parameters), the results were
much improved (Fig. 5 B, Incorrect Parameters). This

A voltage clamp fit B feature fit

2029

shows that even if none of the parameter values matches
those of the targets, the model can be predictive if the cali-
bration procedure is applied to a subset of the parameters.

Experimental test of the calibration procedure

Here, we provide some examples of the calibration proce-
dure used in experimental settings. We focus our attention
on the modulatory effect of the BK current, since it is impor-
tant for determining whether a cell is spiking or bursting
(25,30,31). The dynamic-clamp technique is used to inject
an artificial BK current into the cell, as described in Mate-
rials and Methods.

Spiking to bursting

In the first experiment, we considered the transition from
spiking to bursting (Fig. 6, A-D). We asked whether
addition of a BK-type current could result in a spiking-to-
bursting transition, and if so, what BK maximal conduc-
tance would be needed. The experimental cell exhibited
spontaneous electrical activity, with spiking and bursting
interspersed (not shown). A pharmacological agent was
administered that irreversibly blocks the activity of BK
channels (paxilline, 1 uM), and a few minutes later the
cell displayed tonic spiking (Fig. 6 B, solid trace).
This suggests that the BK current was responsible for the
bursting mixed in with the spiking in the cell’s spontaneous
activity.

C model prediction D

model prediction

300

<
o
~ 100
-100 -70 -70 -70
—  target 0 1 2 0 25 5 2 4 2 4
. time (sec) time (sec) time (sec) time (sec)
mmma fit
E voltage clamp fit F feature fit G model prediction

I(pA)

time (sec)

2.5 5 0 25 5
time (sec) time (sec)

FIGURE 6 Testing model predictions: bursting from spiking and vice versa via BK modulation. (A and B) Voltage-clamp and voltage-trace model fits. (C)
Testing the model prediction (dashed line) that adding 1 nS of BK conductance should convert spiking to bursting. Tested on the same cell used for calibration
(solid line). (D) Testing the model prediction that a further increase in BK conductance will increase the duration of the burst active phase. (E and F) Voltage-
clamp and voltage-trace model fits. (G) Testing the model prediction that removal of BK conductance should convert bursting to spiking.
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With paxilline present, a few minutes of spiking activity
were recorded and the features were extracted from the
voltage trace. These features and the recorded voltage-
clamp protocol (Fig. 6 A, solid trace) were used as a target
for the calibration procedure (with nine calibration param-
eters: C, Vi, Sims 8Car K> Tns &5K> Sleaks and V1), with the
maximal conductance of the BK current (ggx) set to zero.
The best-fit model reproduces the period and the mean
spike amplitude (Fig. 6 B, dashed trace), as well as the
steady-state currents under voltage clamp (Fig. 6 A, dashed
trace). Using the model cell, we generated predictions
about the effects of adding back a BK with a range of
maximum conductances. Simulations of the model cell
predicted that addition of BK current would recover
bursting with the transition occurring at ggxg = 0.5 nS.
Further increases of gpx resulted in increasing durations
of the burst active phase with little effect on the burst
period. We tested these predictions on the same cell using
the dynamic clamp. The onset of bursting was first
observed when we injected 0.5 nS of BK current (results
not shown), and it was mixed with spiking activity.
When the BK current injected was increased to 1 nS the
bursting activity was consolidated (Fig. 6 C, solid trace).
Simulations with the model cell accurately predicted the
burst period, the burst amplitude, and the burst duration
relative to the silent phase (Fig. 6 C, dashed trace). The
model predicted that when the BK conductance was
increased to 4 nS, there would be an increase in the
active-phase duration with little change in burst period
(Fig. 6 D, dashed trace). This was verified when the BK
conductance added to the actual cell was increased to
4 nS (Fig. 6 D, solid trace).

Bursting to spiking

In this experiment, we considered the transition from
bursting to spiking. We recorded the electrical activity
from a cell displaying bursting with a period of ~0.6 s
(Fig. 6 F, solid trace) and used the voltage-trace features
and the voltage-clamp data (Fig. 6 E, solid trace) to
run the calibration process. We then asked whether sub-
traction of the estimated BK conductance in the cali-
brated cell would result in a transition from bursting to
spiking. Finally we tested the prediction in the experi-
mental cell.

The calibration procedure (10 free parameters: C, v,,, S,
8Ca» &K> EBK> Tn» &SK> leak> and Vi) resulted in a model cell
that was consistent with the voltage-clamp data (Fig. 6 E,
dashed trace) and the bursting activity (Fig. 6 F, dashed
trace). With this calibrated model cell, it is predicted that
removing the BK conductance (estimated at gpx =
1.52 nS) should switch the electrical activity from bursting
to spiking (Fig. 6 G, dashed trace). We tested this prediction
in the same cell by bath application of the BK blocker paxil-
line (1 uM), and, as predicted, the cell displayed tonic
spiking (Fig. 6 G, solid trace).
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Interaction between the BK conductance and the BK-channel
time constant

In this experiment, we explored how the transition from
bursting to spiking is affected by changes to both ggx and
the time constant of BK-channel activation (7zx). We previ-
ously demonstrated that the ability of a BK current to
promote bursting depends on the magnitude of the BK
conductance and on the BK-channel activation rate (31).
If this activation is not fast enough, the BK current no longer
promotes bursting.

We recorded the electrical activity from a cell that exhibits
spontaneous tonic spiking (Fig. 7, data) and used part of this
trace to compute the features for the calibration procedure
(eight calibration parameters: C, gcq, 8x> &sk»> 8BK> Ke, Sleaks
and V). The resulting calibrated cell (Fig. 7, model)
matches the period, the shape of the action potential, and
the mean amplitude of the experimental cell. Using the
model, we explored 1), whether a BK current could promote
bursting, and 2), the effect of increasing the BK conductance
and the time constant of the BK channel activation. Simula-
tions predicted that the transition to bursting occurs for
grx = 0.2 nS and bursting persists if ggg is increased to
1 nS (Fig. 7, prediction 1). When ggx and 7k are increased
to 10 nS and 10 ms, respectively, the model predicts that the
duration of the burst active phase should increase, whereas
the amplitude should decrease (Fig. 7, prediction 2). Finally,
when T is increased from 10 to 13 ms, the same addition
of BK current (ggx = 10 nS) does not convert spiking to
bursting (Fig. 7, prediction 3).

We tested these predictions with the dynamic clamp on
the cell used to calibrate the model. The transition to
bursting was observed when 0.4 nS of BK conductance
was injected (results not shown), as well as when ggx =
1 nS was added (Fig. 7, fest I). Different values of ggg
were tested (1, 2, 4, 10, 25, and 100 nS), and bursting oscil-
lations were observed in all cases (results not shown). The
value of ggx = 10 nS was chosen to investigate the effect
of the time constant of BK-channel opening. Using gpx
=10 nS, when the value of 7px was increased from 5 to
10 ms, the burst active phase was increased and the ampli-
tude decreased, as predicted (Fig. 7, fest 2). With a longer
time constant of 7 = 12 ms, the addition of BK current
did not convert the spiking to bursting (Fig. 7, test 3), again
consistent with the prediction.

We have evaluated our procedure on six cells so far, for
a total of 30 predictions regarding BK and K conductances.
Using calibrated models, the percentage of correct predic-
tions (87%) was higher than the percentage of correct
predictions using random noncalibrated models (44%).

DISCUSSION

We have presented an approach for confronting heteroge-
neity in a cell population, wherein we calibrate a model
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FIGURE 7 The model was calibrated to a spiking cell and then several predictions were made and tested with dynamic clamp on the same cell. Prediction 1
was that spikes would convert to bursting when ggx = 1 nS is added. Prediction 2 was that broadening of the active phase and reduction of amplitude would
occur when ggg is 10 nS and 7k is increased to 10 ms. Prediction 3was that there would be no conversion to bursting when 7k is 12 ms or more in the added

current. The dashed lines indicate breaks in time.

using a single cell and test predictions on that same cell.
This has similarities to the approach of Hobbs and Hooper
(32), but with our approach the model parameters are
estimated while the cell is still being recorded. The speed
with which we can find a combination of parameters to
match the cell’s activity allows us to test the model on
that very same cell.

The fast calibration speed is achieved by using a program-
mable GPU to inexpensively parallelize computations, and
prediction testing is performed using the dynamic-clamp
method. The cost to equip a laboratory with these tools is
low, ~5-10% of the price of a patch-clamp setup. Most
modern computers come equipped with one GPU, and
more can be added; with several GPU units, one could test
populations of models with different current combinations.
Given these advantages, GPUs are becoming increasingly
important in computational biology (33,34).

The number of parameters that can be estimated from
noisy data is always limited. Here, we have used a
feature-based estimation method (19), because directly
fitting a noisy voltage trace is not necessary or desirable.
To further constrain parameter values, we have also used
voltage-clamp recordings of whole-cell currents. Neverthe-
less, there is a limit on the number of parameters we can
estimate, which places a limit on the level of detail achiev-
able in the model. A possible improvement would be to use

wide-dynamic-range voltage-clamp signals (32). Although
this could improve the number of parameters we can esti-
mate, there will always be a limit, and a model is always
a simplification of the biological system. Thus, we cannot
expect to find a unique set of parameters that represents
the single cell being studied.

Instead, we seek to develop a model that shares the essen-
tial dynamical properties with the cell being investigated.
This means that the change in the activity pattern of the
model should be qualitatively similar to the change of the
cell’s pattern when key parameters, such as maximal
conductances, are varied. Here, we looked at the effects of
the BK conductance, which has been our recent focus
(31). We showed that the models obtained from spiking cells
could be converted to bursting with the addition of BK
conductance, and using the dynamic-clamp method, we
verified these predictions on the same cells that were used
to produce the models. We have also shown (using synthetic
data) that even if our model does not contain all the conduc-
tances present in the cell, it can still produce correct quali-
tative predictions.

Using this, to our knowledge, new approach it is possible
to assemble a population of models, each representing
a single individual in a heterogeneous cell population.
Each model can be validated using the cell from which it
was derived. The ensemble of model cells can then be
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used to examine the source of heterogeneity in the popula-
tion and the effects of heterogeneity on the behavior of
the population in response to stimuli.
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