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Abstract The Hodgkin-Huxley (HH) model is the basis for
numerous neural models. There are two negative feedback
processes in the HHmodel that regulate rhythmic spiking. The
first is an outward current with an activation variable n that has
an opposite influence to the excitatory inward current and
therefore provides subtractive negative feedback. The other
is the inactivation of an inward current with an inactivation
variable h that reduces the amount of positive feedback and
therefore provides divisive feedback. Rhythmic spiking can
be obtained with either negative feedback process, so we ask
what is gained by having two feedback processes. We also ask
how the different negative feedback processes contribute to
spiking. We show that having two negative feedback process-
es makes the HH model more robust to changes in applied

currents and conductance densities than models that possess
only one negative feedback variable. We also show that the
contributions made by the subtractive and divisive feedback
variables are not static, but depend on time scales and con-
ductance values. In particular, they contribute differently to
the dynamics in Type I versus Type II neurons.

Keywords Hodgkin-Huxley . Negative feedback . Rhythmic
spiking . Robustness . Model reduction .Model analysis

1 Introduction

The Hodgkin-Huxley (HH) model revolutionized neurosci-
ence with its description of the action potential using four
dynamic variables (Hodgkin and Huxley 1952). In the next
decade simpler descriptions of an impulse were developed
independently by FitzHugh (Fitzhugh 1961) and Nagumo
(Nagumo et al. 1962) that are now known as the FitzHugh-
Nagumo model. This model consists of only two dynamic
variables, which greatly simplifies analysis at the expense of
biophysical detail. Other planar models for membrane excit-
ability were later developed, most notably the Morris-Lecar
model that is expressed in terms of ionic currents (Morris and
Lecar 1981). In this article, we examine how reductions in
dimensionality affect impulse generation in the Hodgkin-
Huxley model.

One apparent redundancy of the HH model is the presence
of two negative feedback variables. One, the activation of a
Kþ current (n), subtracts from the positive feedback respon-
sible for the upstroke of the impulse. The other, inactivation of
the positive feedback Naþ current (h), divides the current. It is
known that models with only one negative feedback variable,
such as the Morris-Lecar model, can also produce rhythmic
spiking. The Morris-Lecar model uses subtractive feedback,
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eliminating the redundancy of the HH model by replacing
inactivating Naþ current with non-inactivating Ca2+ current,
and divisive feedback but no subtractive feedback can also be
used in excitable cell models (Wang and Rinzel 1992). Can we
detect an advantage to having both subtractive and divisive
negative feedback? In the HHmodel that possesses both types
of negative feedback processes, what are the respective con-
tributions of each to rhythmic spiking?

To answer these questions, we use three numerically
computed metrics to contrast properties of the full HH
model with those of several lower-dimensional reduced
models that are related to the FitzHugh-Nagumo and
Morris-Lecar models. The first measures the width of a
parameter regime within which tonic spiking is a unique
and stable limit cycle oscillation. The second metric,
contribution analysis, measures how changes in the vari-
ables’ time scale parameters affect the durations of the
“active phase” (AP) during the action potential and the
inter-spike interval “silent phase” (SP) of a tonically spik-
ing model (Tabak et al. 2011). The third metric, dominant
scale analysis, measures a sensitivity of the voltage dy-
namics to each of the ionic currents to rank their influence
(Clewley et al. 2005, 2009; Clewley 2011, 2012). Each of
these approaches highlights different, but related, proper-
ties of action potential dynamics and yields different
kinds of insights.

2 Methods

2.1 Models

We use the HH model (Hodgkin and Huxley 1952) of the
action potential. It involves a fast sodium current (INa , with
activation variable m and inactivation h), a delayed rectifying
potassium current (IK ; with activation variable n), and a leak
current (IL ). The differential equations are:

C
dV

dt
¼ Iapp � INa � IK � IL ð1Þ

dm

dt
¼ m∞ Vð Þ � mð Þ

τm Vð Þ ð2Þ

dn

dt
¼ n∞ Vð Þ � nð Þ

τn Vð Þ ð3Þ

dh

dt
¼ h∞ Vð Þ � hð Þ

τh Vð Þ ð4Þ

where Iapp is the applied current. The currents used
above are:

INa ¼ gNam
3h V � VNað Þ ð5Þ

IK ¼ gKn
4 V � VKð Þ ð6Þ

IL¼ gL V � VLð Þ ð7Þ

where gNa, gK, gL are the maximal conductances and VNa,

VK, VL are the reversal potentials associated with the currents.
The steady state activation and inactivation functions are:

χ∞ Vð Þ ¼ αχ Vð Þ
αχ Vð Þ þ βχ Vð Þ ð8Þ

τχ Vð Þ ¼ λχ

αχ Vð Þ þ βχ Vð Þ ð9Þ

For χ=m,n,h. The transition rates αχandβχ for χ=m,n,h
are given in Table 1. λχ is a parameter that we use to vary the
time constant τχ and the default is λχ=1.

Hodgkin (Hodgkin 1948) introduced two types of neurons:
Type I neurons have a continuous relationship between firing
frequency and applied current, and can fire at arbitrarily low
frequencies (Kopell et al. 2000; Ermentrout 1996; Izhikevich
1999). Type II neurons have a nonzero minimum firing fre-
quency, and thus a step discontinuity between firing frequency
and applied current (Izhikevich 2000; Hodgkin and Huxley
1952). We examine both types, which correspond to the
different sets of parameters given in Table 1.

In addition to analyzing the full HH model (which we refer
to as model A), we also examine 3-dimensional and 2-
dimensional reductions (Table 2). Model B is a standard 3D
reduction of the HH model that takes advantage of the fast
dynamics of m relative to the other gating variables. In this
case, and in all subsequent models,m=m∞(V) (Fitzhugh 1960;
Rinzel 1985). Model C is similar to model B, but the recovery
variables n and h are slowed down by a factor of 50 so that
impulses are relaxation oscillations.

The 2-dimensional reductions of the HH Model are
achieved by freezing one of the two negative feedback vari-
ables. In the h-model (Model D), we freeze the gating Variable
n by setting n=1. In the n-model (Model E), we freeze the
gating variable h by setting h=1.

2.2 Contribution analysis

We wish to know the relative contributions of each negative
feedback process to spike termination and initiation. If the
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negative feedback process contributes to impulse termination,
then slowing down the feedback variable by increasing its
time constant will increase impulse duration. Similarly, if the
process contributes to impulse initiation, then slowing down
the process by increasing its time constant will significantly
delay impulse initiation.

We find the contribution of n to impulse termination and
initiation by perturbing its time constant τn, and calculating the
fractional change in AP and SP durations. This is illustrated in
Fig. 1, where the model is in a tonic spiking regime. To measure
the contribution of n to the AP, at the start of the action potential
τn is increased by δτn. This slows down the rise in n during that
action potential, with a resulting increase in the AP duration of

δAP. Therefore, the contribution of n to impulse termination is

Cn
AP ¼ δAP

AP
τn
δτn

. Similarly, the contribution of n to impulse

initiation is measured by perturbing τn at the beginning of the

SP, giving Cn
SP ¼ δSP

SP
τn
δτn

Similar definitions apply for the h

variable (Tabak et al. 2011). The AP and SP durations were
determined using a simple voltage threshold of -40 mV to detect
the start and end of the AP. These measurements were repeated
while varying a parameter such as τh over a wide range in which
spiking solutions occurred. The contribution of variable X was
calculated using a δτX that perturbed τX by 4 %, which we chose
so that the perturbation is just large enough to calculate the effects
accurately. Numerical simulations for this part of the analysis

Table 1 Transition rates and parameter values for the Type I and Type II HHmodels. The Type I parameter set is taken fromKopell et al. (2000) and the
Type II parameter set is from the standard HH-Model (Hodgkin and Huxley 1952)

Type I Type II

Transition Rates αm

βm

αh

βh

αn

βn

0.32(V+54)/(1−exp(−(V+54)/4))
0.28(V+27)/(exp((V+27)/5)−1)
0.128exp(−(50+V)/18)
4/(1+exp(−(V+27)/5))
0.032(V+52)/(1−exp(−(V+52)/5))
0.5exp(−(57+V)/40)

0.1(V+40)/(1−exp(−(V+40)/10))
4exp(−(V+65)/18)
0.07exp(−(V+65)/20)
1/(1+exp(−(V+35)/10))
0.01(V+55)/(1−exp(−(V+55)/10))
0.125exp(−(V+65)/80)

Parameter Values gNa 100 mS/cm2 120 mS/cm2

gK 80 mS/cm2 36 mS/cm2

gL 0.1 mS/cm2 0.3 mS/cm2

VNa 50 mV 50 mV

VK −100 mV −77 mV

VL −67 mV −54.4 mV

Iapp 3 μA/cm2 20 μA/cm2 (h-model 70 μA/cm2,

n-model 100 μA/cm2)

C 1 μF/cm2 1 μF/cm2

Table 2 The full model and its reductions

Model A: Full HH Model

C
dV

dt
¼ Iapp − INa − IK − IL

dm

dt
¼ m∞ Vð Þ − mð Þ

τm Vð Þ ;
dn

dt
¼ n∞ Vð Þ − nð Þ

τn Vð Þ ;
dh

dt
¼ h∞ Vð Þ − hð Þ

τh Vð Þ

Model B: HH Model with m = m∞

C
dV

dt
¼ Iapp − INa − IK − IL

m ¼ m∞ Vð Þ; dn

dt
¼ n∞ Vð Þ − nð Þ

τn Vð Þ ;
dh

dt
¼ h∞ Vð Þ − hð Þ

τh Vð Þ

Model C: Relaxation limit with increased time constants for n and h

C
dV

dt
¼ Iapp − INa − IK − IL

m ¼ m∞ Vð Þ; dn

dt
¼ n∞ Vð Þ − nð Þ

50 τn Vð Þ ;
dh

dt
¼ h∞ Vð Þ − hð Þ

50 τh Vð Þ

Model D: h-model

C
dV

dt
¼ Iapp − INa − gK V − VKð Þ − IL

� �
;

m ¼ m∞ Vð Þ; n ¼ 1;
dh

dt
¼ h∞ Vð Þ − hð Þ

τh
;

Model E: n-model

C
dV

dt
¼ Iapp − IK − gNam∞

3 V − VNað Þ − IL
� �

m ¼ m∞ Vð Þ; h ¼ 1;
dn

dt
¼ n∞ Vð Þ − nð Þ

τn
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were performedwith XPP (Ermentrout 2002) using the 4th order
Runge–Kutta algorithm (dt=0.01ms) and independently verified
with PyDSTool (Clewley 2012) using the adaptive time-step
Radau algorithm (Hairer and Wanner 1999) and after allowing
the system to relax to a limit cycle before measuring the change
in the AP and SP durations. In the PyDSTool version of this
analysis, the AP and SP durations were also defined in terms of
regime changes that were detected by dominant scale analysis
(see below) rather than simple V thresholds, but the trends in the
contribution measures remained the same as those shown in
Figs. 7, 9, 10, and 13 (data not shown).

2.3 Dominant scale analysis

This is an alternate approach that determines which variables
are dominant during different portions of a trajectory. A por-
tion of a trajectory where one subset of variables is dominant
is called a regime. The technique is described in detail in
several previous works (Clewley 2004; Clewley et al. 2005,
2009; Clewley 2011). The determination of dominance is
based on the asymptotic membrane potential (V∞) which is

derived by rewriting the ODE for V as dV
dt ¼ V∞ m;n;hð Þ−Vð Þ

τV m;n;hð Þ .

Then, one computes Ds ¼ dV∞
ds

�� �� for s=m,n,h,a, and l, where

a and l are “dummy” static gating variables for Iapp and Ileak,
respectively. These sensitivity quantities are ranked at each
point in time along a trajectory, and the largest at time t is
called “dominant.” Roughly speaking, we define “regime
change” as the times when the most dominant variable chang-
es. In the AP, there is a regime dominated by n followed by
one that is dominated by h.

Wemeasure the fraction of the AP duration occupied by the
n-dominated regime as the effective contribution of n to the
AP duration and denote it DAP

n . As we do not find any AP
regime dominated by m in the Type I dynamics, we set DAP

m =
0. Similarly, there is no SP regime dominated by h, so DSP

h =0.
Numerical simulations for this part of the analysis were

performed with PyDSTool (Clewley 2012) using the Radau

stiff integrator with variable step size (maximum dt=0.05 ms
for models A and B, 5 ms for model C).

The source code containing the model definitions and the
simulation and analysis scripts are available at http://www.
math.fsu.edu/~bertram/software/neuron and on modelDB
(https://senselab.med.yale.edu/ModelDB). The code is also
included as supplementary material.

3 Results

3.1 Robustness of models with one or two negative feedback
variables

Here we ask whether there is an advantage of having two
negative feedback processes by comparing the HH model
with models that have only one negative feedback process:
the h-model and the n-model. The measure of robustness that
we use is the extent of the parameter range within which tonic
spiking is the unique stable limit cycle solution. We use Type
II parameter values here but obtained similar results with the
Type I parameter set.

While Iapp acts as an input to the system, gNa measures the
gain of the positive feedback and gK measures the amount of
subtractive feedback. Figure 2 shows the effects of changing
Iapp on voltage traces (panels a, b and c) and the durations of
the AP and SP (d) for the h-model, the n-model and the HH
model (model B). The AP and SP durations are plotted over
the full range of Iapp for which the model cell exhibits tonic
spiking. While AP durations (solid lines) change slightly with
Iapp, SP durations (dashed lines) drop dramatically with in-
creasing Iapp and it is this decrease that is primarily responsible
for the increase in spike frequency as Iapp is increased in
Fig. 2a–c. In the n-model, the decrease in SP is compensated
by an increase in AP duration at larger Iapp. Also, for the h-
model, the range of Iapp values that support spiking is com-
paratively limited.

Fig. 1 Increasing τn by δτn at
the beginning of an impulse slows
down n slightly (red trace), so the
active phase is lengthened by δ
AP (black trace). V=-40 is used
as a threshold to define the onset
and the termination of the active
phase (AP)
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The SP duration of the h-model is restricted and more sensi-
tive to changes in Iapp than the n-model (Fig. 2d). These differ-
ences in response to variations in Iapp can be explained by phase
plane analysis. In Fig. 3, V-nullclines (S shaped for the h-model
and Z shaped for the n-model) with different Iapp values are
presented along with the h-nullcline for the h-model (left) and
the n-nullcline for n-model (left). Fig. 3a shows that changing
Iapp affects the low kneemuchmore than the high knee for the h-
model. This is mostly because hmultipliesm∞

3 (V) in the voltage
equation and at low voltagesm∞

3 (V) is almost zero. When Iapp is
changed, there is a large compensatory change in the value of h
needed to bring V to threshold. On the other hand, when the
value of V is high, the value of m∞

3 (V) is near 1, so variations in
Iapp do not necessitate a large compensatory change in the value
of h at the high knee. Therefore, in most models with divisive
feedback, as long asm∞ is small at negative values of V, the low
knee will be more sensitive to Iapp than the high knee. This is
discussed inmore detail in (Meng et al. 2012; Tabak et al. 2006).
Since the trajectory follows the bottom branch of the V-nullcline
during the SP, the sensitivity of the low knee to Iapp means that
the SP duration will also be sensitive to Iapp, as demonstrated in
Fig. 2. For Iapp sufficiently small, the spiking stops altogether as
the system passes through a Hopf bifurcation. The entire dy-
namic range of the model is covered by the Iapp interval from 68
μA/cm2 to 100 μA/cm2.

In the n-model, changing Iapp also primarily affects the low
knee (Fig. 3b), but less so than in the h-model. Therefore, the
model is more robust to changes in Iapp. On the other hand, for
the n-model there is a sensitivity of the high knee to gNa that is
similar to the sensitivity of the low knee to Iapp for the h-model
(not shown). This is why the range of gNa values that produce
oscillations is small for the n-model (Fig. 5).

Figure 4 shows the changes in AP and SP durations as gNa
and gK are varied. When the activity is regulated by the Na+

current inactivation, as in the h-model, increasing gNa speeds up
the spiking activity by decreasing the SP duration (Fig. 4a, blue
dashed line). If the activity is regulated by the K+ current
activation, as in the n-model, then increasing gNa slows the
activity by increasing the AP duration (Fig. 4a, red solid line).
Thus, the twomodels respond very differently to changes in gNa.
On the other hand, the HHmodel combines a modest increase of
AP duration (as with the n-model) with a modest decrease in SP
duration (as with the h-model) when gNa is increased (Fig. 4a,
green solid/dashed lines). Note also that the HHmodel oscillates
over a much larger range of values of gNa than either the n- or h-
model. Finally, Fig. 4b shows that increasing gK slows the
spiking activity by increasing the SP in all models. It also
decreases AP duration for the n- and HH-models.

The parameter interval for oscillations is delimited by Hopf
or saddle-node of periodics (SNP) bifurcations. That is, as a

Fig. 2 The effects of changing
applied current on AP and SP
durations. Tonic spiking in the (a)
h-model (gk=3.6) (b) n-model
(gNa=12) and (c) HH model
(model B) increases in frequency
when Iapp is increased from
65μA/cm2 to 95μA/cm2. (d)
Durations of the AP (solid line)
and the SP (dashed line) for the h-
model, the n-model and the HH
model

Fig. 3 Nullclines for the h-model
(a) and n-model (b) for three
values of Iapp Parameter values
are as in Fig. 2

J Comput Neurosci (2014) 37:403–415 407



parameter is varied, a model begins to oscillate according to
one of these bifurcations. In our models, when an SNP exists, it
is very close to a subcritical Hopf bifurcation. For simplicity,
we use the Hopf bifurcation as the boundary. If we vary two
parameters, the curves of Hopf bifurcations form the approxi-
mate boundary between oscillatory and non-oscillatory behav-
ior. We show these in Figs. 5 and 6, varying the pairs of
parameters (Iapp,gNa) and (Iapp,gK).

The size of the oscillatory region for the h-model varies
greatly with the frozen conductance, gK. To illustrate, we show
the oscillatory region for several values of gK (Fig. 5a). The
region shifts rightward as gK is increased since more applied
current is required to drive oscillations. In addition, more Na+

conductance is required for the action potential upstroke so the
oscillatory region grows in the gK direction. The size of the
oscillatory region also grows with larger values of gK. By
comparison, the oscillatory region is much smaller for the n-
model (with h frozen) with the same value gK=36mS/cm2. For
this model, the oscillatory region is severely restricted in the
gNa direction (Fig. 5b, note change in scale), since with h
frozen there is no compensation mechanism in the Na+ current

for an increase in gNa. Similar behavior is observed when one
views the oscillatory region in the Iapp−gK plane with the n-
model. As gNa is increased the oscillatory region grows and
moves upward and to the right (Fig. 5d). However, at the
largest gNa value, where the region is very large in the n-
model, the region is very restricted in the gK direction with the
h-model (Fig. 5c, note change in scale). Thus, for each model
with a frozen conductance, the oscillatory region is greatly
restricted with respect to that conductance.

This limitation is overcome in the full HH model, since
now both n and h are free to adapt to changes in gK and gNa.
This is illustrated in Fig. 6, where the oscillatory regions for
the HH model, the h-model (with gK=36mS/cm2, from
Fig. 5a,c) and the n-model (with gNa=120mS/cm

2, from
Fig. 5b,d) are shown together. In the Iapp−gNa plane the h-
model has an oscillatory region with similar size to that of the
HH model but it is right-shifted. However, in the Iapp−gk
plane the oscillatory region for the HH model is much larger
since n can adapt to increases in gK while n is frozen and can’t
adapt in the h-model. The n-model behaves similarly, with a
larger oscillatory region in the Iapp−gK plane, but a

Fig. 4 Effects of changing gNa
and gK on AP and SP durations.
(a) Effects of changing gNa on AP
duration (solid line) and SP
duration (dashed line) for the HH
model, the h-model and the n-
model. (b) Effect of changing gK
on the AP duration (solid line)
and the SP duration (dashed line)
for the HH model, the h-model
and the n-model. Parameter
values are as in Fig. 2

Fig. 5 Oscillatory regions for the
h-model and the n-model. (a)
Oscillatory region for gNa vs. Iapp
using the h-model. (b) Oscillatory
region for gNa vs. Iapp using the n-
model. (c), (d) Oscillatory regions
for gK vs. Iapp
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substantially smaller region in the Iapp−gNa plane where the
variable is frozen. Thus, the HH model provides a good
compromise between the two models with a single source of
negative feedback.

3.2 Slow variable contributions in the relaxation limit

Our goal in this section is to begin the investigation of the roles
played by n and h in the termination of the active phase and the
silent phase of the spike pattern (Fig. 1). We employ the two
methods for evaluating variable contributions that were de-
scribed in Methods (sections 2.2, 2.3). First we consider the
relaxation limit, which we approximate in our simulations by
multiplying the time constants of n and h by 50. In addition, we
set m=m∞(V), so that we have a 3D system with one fast (V)
and two slow variables (n−h). For a range of values of n and h
the fast voltage equation is bistable, and as n and h slowly vary
the voltage moves from one stable point to the other in a
relaxation oscillation. In this case, the extreme separation of
time scales between slow and fast variables should make the
results of the contribution analysis unambiguous. Because the

results for Type I and Type II are very similar, we only show
results for Type II dynamics in Model C of Table 2.

Intuitively, the faster the rate of change a negative feedback
variable is relative to the other, the more it will vary and
therefore it should contribute to ending the active and silent
phase, so we vary the relative time scales of n and h by varying
λn/λh (see Eq. (9)). Increasing this ratio slows the rate of
change of n relative to h.

In Fig. 7a, the contribution of n to the active phase (CAP
n )

decreases with the ratio λn/λh so that n contributes less when
it is slower relative to h. Panel b shows that the variations of
CAP
h are complementary to those of CAP

n ; as the contribution
of n to AP duration declines with λn/λh, the contribution of
h increases. As expected, making a variable faster relative
to the other increases its contribution. In contrast, n is
almost entirely responsible for setting the interspike interval,
regardless of λn/λh (Fig. 7a) and h contributes little
(Fig. 7b). Again CSP

n and CSP
h are complementary, but this

time they are not much affected by the relative speeds of n
and h. These results show that n and h contribute similarly
to AP duration, with a dependence on the relative speed of

Fig. 6 Oscillatory regions for the
HH model (Model B) with
oscillatory regions for the h model
(gK=36mS/cm

2) and the n-model
(gNa=120mS/cm

2) superimposed.
(a) In the Iapp−gNa plane, the region
is slightly smaller in size for the HH
model than the h-model and larger
in size for the HHmodel than the n-
model. (b) In the Iapp−gK plane, the
region for the HH model is much
larger than for the h-model. The
bounding curves are curves of Hopf
bifurcations (see text for details)

Fig. 7 Contributions of n and h in the relaxation limit (Model C) with
Type II dynamics. The relative time scales of n and h are varied by
changing λn/λh, with λn=1. (a) Contributions of n to episode termination
(CAP

n ) and initiation (CSP
n ). (b) Contributions of h to episode termination

(CAP
h ) and initiation (CSP

h ). (c) First panel shows the time courses of the
variables n,h and m∞. Second and third panels are the absolute values of
the Na+ and K+ currents for the AP (left) and the SP (right)

J Comput Neurosci (2014) 37:403–415 409



the variable, while only n contributes significantly to setting
the SP duration. That is, a spike can occur only when n has
decreased to a certain level. For both SP and AP, the sum of
the contributions of n and h is nearly equal to 1, indicating
that this approach accounts for all contributions to active and
silent phase durations (Tabak et al. 2011).

Figure 7c shows the time courses of n, h and m∞ (upper
panel) and the absolute values of the Na+ and K+ currents
(lower panels) for λn/λh =1. During the AP, n rises and h falls,
while the opposite occurs during the SP. It is not evident from
these time courses why n controls the duration of the SP. Yet,
these variables affect the membrane potential through the INa
and IK currents. During the SP, the conductance of the Na+

current, gNam
3
∞h , is nearly 0 since m∞≈0. Hence h has a little

impact onV during the SP, which n controls instead. In contrast,
Na+ and K+ current levels are similar during the AP, which
explains why n and h contribute together to the active phase.

3.2.1 Comparison with dominant scale analysis

We employ dominant scale analysis here to determine
which fraction of the AP is controlled by n, using DAP

n ,
and which fraction is controlled by h, using DAP

h . Sim-
ilar fractions (DSP

n ,DSP
h ) are computed for the SP.

Figure 8 shows that n is dominant during the entire SP,
regardless of the time scale ratio. This is consistent with the
results from contribution analysis (Fig. 7). The n variable is also
dominant during much of the AP, when λn/λh is small (n faster).
This dominance is transferred to h as λn/λh is increased, increas-
ing the speed of h relative to n. Again, there is qualitative
agreement with the contribution analysis (Fig. 7).

3.3 Contributions away from the relaxation limit

Next, we return the time constants to their default values λn=1
and λh=1 for model B of Table 2. The oscillations produced
are now recognizable action potentials rather than relaxation

oscillations. Figure 9 shows the results of the contribution
analysis for n and h for the Type I and Type II parameter sets.
The variables contribute to the AP and SP in a similar manner
to the relaxation case when Type II excitability parameters are
used (Fig. 9a2–c2). This suggests a spiking mechanism sim-
ilar to spiking at the relaxation limit.

Figure 9 a1 and b1 shows that the contributions of n and h
to the AP duration have similar values with Type II and
relaxation cases. Surprisingly, though, for Type I parameter
values, neither variable contributes much to the SP duration.
This can also be seen in Fig. 9c1, where the sum of the n and h
contributions is far below one for the SP. This is in stark
contrast to the relaxation oscillation case. What is responsible
for terminating the SP away from the relaxation limit? We
examine this in Fig. 10. To do so, we increased the membrane
capacitance C for the duration of one AP or SP, thereby
increasing the time constant of V during that phase. For the
Type II parameter set, this shows thatV dynamics have a small
influence on AP and SP durations (Fig. 10b). For Type I
parameters, V dynamics are primarily responsible for the SP
duration (Fig. 10a). The contributions of n,h and V sum to 1
for both AP and SP (Fig. 10c), as expected.

Figure 11 shows the time courses of n, h and m∞ (row a), the
absolute value of the Na+ and K+ currents (row b), and the
absolute value of the sum of the leak current and applied current
(row c) for Type I and Type II parameters. During the AP, Na+

and K+ current are similar and their values are much higher than
Ileak+Iapp. This confirms that n and h are controlling the AP.
During the SP, IK and INa are almost 0 for the Type Imodel, while
the net current Iapp−Ileak > 0 slowly depolarizes the membrane
towards spike threshold. However, for the Type II model, IK is
larger than the other currents during the silent phase because it
deactivates much more slowly during the SP, helping to gate the
effects of the depolarizing forces. Thus, we can interpret n to be
responsible for spike initiation for the Type II model but not for
the Type I model, where Iapp and Ileak are the main factors
bringing V back from the hyperpolarized levels of the SP.

3.3.1 Dominant scale analysis explains the “contribution
of V”

In Fig. 9, we observed that none of the negative feedback
variable contributes much to SP for Type I. We found a
significant contribution of V (Fig. 10), meaning that changing
the V time constant affected SP duration. But what does this
mean? To understand how V dynamics influence the SP, we
can use dominant scale analysis.

Figure 12 shows the dominant scale analysis for model B.
For the Type II parameter set, both n and h contribute to the
AP with n contributing more when it is faster than h, and vice
versa. As was seen with contribution analysis, n is dominant at
all times during the SP. With the Type I parameter set the
results are again consistent with contribution analysis. In

Fig. 8 Dominant scale analysis in the relaxation limit (Model C) with
Type II dynamics. Influence of (a) n and (b) h on AP and SP durations
with the ratio λn/λh
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particular, n plays only a partial role and h no role at all in the
SP. Instead, the leak and applied currents are important, as ism
(Fig. 12c1). As the K+ current deactivates (decline in n) it is
the leak and applied depolarizing currents that bring the volt-
age back to spike threshold. As the voltage depolarizes the
Na+ current begins to activate (m), complementing the effects
of Ileak and Iapp. In model B, m=m∞(V) so Na

+ current activa-
tion is instantaneous with V. Thus, the “V contribution” indi-
cated in our contribution analysis (Fig. 10) is mediated by two
factors that depend only on V (Ileak and activation of INa) and a
constant applied current.

3.4 Contributions of the variables in the full HH model

We began our analysis with the relaxation limit as the simplest
case, and then we removed the relaxation assumption and
found that in this case there was a difference between Type I
and Type II dynamics for the HH model. We now remove the

rapid equilibrium assumption m=m∞(V) and analyze the full
HH Model (model A of Table 2). This does not significantly
affect the relative contributions of n and h (not shown). Fig. 13
shows the m contribution for a range of λn/λh. Contributions
ofm are always small and, as expected, are independent of the
ratio λn/λh. A similar result is obtained with dominant scale
analysis (not shown). Thus, adding independent dynamics of
m has little effect on its contribution to the action potential,
confirming that the often-used quasi-equilibrium approxima-
tion (m=m∞(V)) has little qualitative impact on the spike
dynamics in these HH models.

4 Discussion

Biological systems rarely take the simplest approach to
achieving a function. Instead, there are often complex

Fig. 9 Away from the relaxation
limit, n and h contribute
differently with Type I and Type
II dynamics. (a1-c1)
Contributions with Type I
dynamics. (a2-c2) Contributions
with Type II dynamics

Fig. 10 V is responsible for the
episode initiation when the Type I
parameter set is used. (a)
Contribution of V to episode
termination and initiation for the
Type I parameter set and (b) Type
II parameter set. (c) The sums of
the contributions of the n,h and V
to the AP and to the SP for Type I
excitability are close to 1. Similar
results are observed for Type II
excitability
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pathways where simpler ones would be sufficient and redun-
dancies where none seem needed. We have explored the roles
played by two apparently redundant elements of a classic
model for neuronal electrical activity, as well as the advantage
of having redundancy in this model. Although the results of
the analysis are specific to the Hodgkin-Huxley model, the
two analysis techniques that we employed could be used for
any neuronal model. For example, one could use the tech-
niques to analyze the contribution that inactivation of an A-
type K+ current or T-type Ca2+ current make to spike initiation
or termination, or one could analyze the contribution that n
and h make in a model with these additional types of ionic
currents. In the latter case, the results would likely differ
quantitatively, and perhaps qualitatively, from what we show
here. Indeed, we have demonstrated that even with a single
model the contributions made by n and h are different with
Type 1 and Type 2 dynamics, and differ at the relaxation limit

versus away from that limit. In other words, the contributions
vary with the set of parameter values used. Therefore, the
main messages that we wish to convey are (1) divisive and
subtractive feedback can contribute very differently to differ-
ent phases of the impulse and are model- and parameter-
dependent, (2) contribution analysis and dominant scale anal-
ysis are two complementary techniques that can be used to
determine these contributions, and (3) having both variable K+

and Na+ conductance in the Hodgkin-Huxley model increases
the robustness of the oscillations to parameter changes.

4.1 Robustness of rhythmic spiking: two feedback variables
are better than one

We first focused on whether there is an advantage to having a
model with two negative feedback variables instead of one by
analyzing reduced models in which n or h were held constant.

Fig. 11 Difference between Type I (left) and Type II (right) excitability
away from the relaxation limit in terms of the system variables and
currents. (Row a) Time courses of the system variables. (Row b) Abso-
lute value of the Na+ and K+ currents for both the active phase (left sub-

plot) and the silent phase (right sub-plot). (Row c) Absolute value of the
sum of the applied and the leak currents for both the active phase (left sub-
plot) and the silent phase (right sub-plot)

Fig. 12 Dominant scale analysis
for Type I (top) and Type II
(bottom) excitability away from
the relaxation limit (Model B).
Influence of (a) n, (b) h and (c)
Ileak, Iapp and m which is
instantaneous (m=m∞)
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One observation from the oscillatory regions of the single
negative feedback variable models in Fig. 5 is that the regions
are highly sensitive to the conductance associated with the
frozen variable. Having an activation variable like n allows the
system to compensate for increases in gK (or Iapp) by simply
reducing the values covered by n during spiking. Thus there is
a large range of values where oscillations occur. When n is
frozen, a change in gK or Iapp may also be compensated by a
change in the values covered by h during spiking, but because
the V-nullcline is so sensitive to gK or Iapp in that case, the
necessary change in values may be too large to support spik-
ing (cf. Fig 3a). Similarly, the n-model shows little compen-
satory ability to a change in gNa because its V-nullcline is
sensitive to changes in this parameter. On the other hand, if
we unfreeze h, then a change in gNa can be compensated by an
opposite change in the range of values covered by h. Since the
Hodgkin-Huxley model has compensation in both the Na+

and K+ currents it can compensate for a wide range of varia-
tions in all three parameters Iapp, gK and gNa (Fig. 6).

Nevertheless, we saw in Figs. 5 and 6 that the h-model
could support oscillations in a wide area of the Iapp - gNa
plane, and that the n-model could support oscillations in a
wide area of the Iapp - gK plane. Depending on the values of
the other parameter, these areas could even be larger than the
area supporting oscillations in the HH model. However, these
areas, for instance the area shown with gK=18 in Fig. 5a
(h-model), comprise parameter values that are much larger
than in the HHmodel. In other words, it would be more costly
for a cell to operate in these ranges, because this would require
more inputs and more channels on the cell surface. Finally, we
note from Figs. 2 and 4 that the HH model typically has a
shorter active phase than the n- and h-model, with little
variation in AP with parameters. This ensures a short and
constant spike duration in many situations.

Thus, adding one extra negative feedback variable to the n-
or h-model allows for a robust spiking behavior. It is not
surprising that allowing a parameter to “unfreeze” would lead

to more flexible behavior. There are indeed many examples in
computational biology where the robustness to input or pa-
rameter values, or the range of possible behaviors, are in-
creased by adding dynamic variables (Tomaiuolo et al.
2008; Tsai et al. 2008; Howell et al. 2012).

4.2 The contributions of the negative feedback variables
are parameter dependent

An interesting finding is that the divisive feedback variable
contributes very little to the SP duration in the relaxation limit.
This raises the question of whether the h-model can produce
impulses in this limit. It does, but only over a restricted range
of applied currents, due to sensitivity of the lower knee of the
V-nullcline to changes in Iapp (Fig. 3). This sensitivity also
explains why h does not contribute significantly to the silent
phase. Thus, the high sensitivity of the h-model to Iapp and the
negligible contribution to the SP of h dynamics in the HH
model occur for the same reason. Namely, during the silent
phase m∞(V) is close to 0 so h dynamics have little effect.
Thus, as long as this holds (m∞(V)≈0 during the SP), we
expect little or no contribution of h to the SP. In models for
whichm∞(V) is not close to 0 during the silent phase, recovery
from inactivation might contribute to terminating the SP. That
is, the negligible contribution of h dynamics to the SP depends
on the parameters describing INa activation.

Another interesting finding from the contribution analysis
arose from examining variable contributions for parameter
sets yielding Type I or Type II dynamics. In the relaxation
limit, the contributions of n and h with the Type I parameter
set are similar to those with the Type II parameter set. This is
not the case away from the relaxation limit (Fig. 8). Indeed, for
the Type I case, spike initiation relies heavily on elements
other than n and h . This was brought to light using contribu-
tion analysis (Fig. 10), and then fully explored with dominant
scale analysis (Fig. 12). Again, this shows that the results of

Fig. 13 Validating them=m∞ assumption used in model B bymeasuring
the contributions of m to the AP and SP in the full model A. (a)
Contributions of m to episode termination (CAP

m ) and initiation (CSP
m ) for

the Type I parameter set. (b) Contributions of m to episode termination
(CAP

m ) and initiation (CSP
m ) for the Type II parameter set. When m is not

instantaneous it has a weak contribution to both AP and SP (c) Sums of
the contributions of all variables includingm to the AP (CAP

n +CAP
h +CAP

m +
CAP
V ) and to the SP (CSP

n +CSP
h +CSP

m +CSP
V )) for the Type I parameter set.

Similar results are observed for the Type II parameters
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the contribution analysis depend on the parameters describing
channel kinetics.

We also analyzed how the parameters that change excit-
ability, such as the Na+ conductance gNa and the applied
current Iapp, affect the contributions of n and h to the initiation
and termination of the active phase and silent phase (not
shown). We observed that the relative contributions of n and
h are not sensitive to gNa or Iapp, except in the following way:
h contributes a little more to active phase termination when the
Na+ conductance is higher, while it decreases slightly with Iapp
for both Type I and Type II cases so that h contributes less
when applied current is high. On the other hand, increasing
Iapp for the Type I model brings back the contribution of n to
the SP observed in Type II. This is because at highmagnitudes
of applied current,V becomes strongly depolarized, driving n∞
away from zero. Finally, the relative contributions of n and h
are also largely unaffected by changes in K+ and leak
conductances.

4.3 Analysis of the contributions of variables and inputs: two
tools are better than one

The combined use of our two forms of analysis brings
deeper insights into the action potential mechanism than
either method alone. For instance, although there are
measures of the contribution of V with CV, there is no
corresponding dominant scale measure DV. This is be-
cause the latter technique measures the effects of distinct
input currents on V∞. In the other direction, the measures

of DIapp and Dleak do not have a corresponding CIapp and
Cleak because those inputs do not have intrinsic dynamics
involving time constants that can be perturbed.

The m variable is different from n and h in having such a
small time constant in all the models. Changing τm mostly
affects the time during the jumps between active and silent
phases. Thus, it may not be surprising that perturbing τm has a
small effect on the durations of the active phase and silent
phase (i.e., a small Cm was measured (Fig. 13)). For instance,
at the relaxation limit, there is a folded nullsurface in the (V,n,
h) state space, and it is solely the slow dynamics of n and h that
controls the flow on each sheet, bringing the system to a fold
where it jumps between the two different phases. m (or Iapp/
Ileak has no contribution to flow on a sheet and both analyses
agree in this respect. However, m∞(V) helps to shape the
folded surface, which is the set of points where the V deriva-
tive is 0 and m=m∞(V), and therefore affects the precise
position of the transition points between the lower sheet (silent
phase) and upper sheet (active phase). Away from the relax-
ation limit, m, Iapp and Ileak depolarize V during the silent
phase and therefore they have an effect with the time constant
τV,so C

V is positive. This is confirmed by the dominance ofm,
Iapp and Ileak in Fig. 12.

As one would expect, the m activation variable is
only dominant towards the end of the silent phase and
initiates the action potential upswing in both Type I and
Type II excitability regimes (Fig. 11). After the up-
swing, K+ activation dominates the dynamics until Na+

inactivation assists in the repolarization of the spike’s
downswing. When INa once again becomes small, the
action potential ends and K+ dynamics drive the mem-
brane through the refractory period at the beginning of
a new silent phase. The dominant scale analysis showed
that m, Iapp and Ileak have similar contributions to epi-
sode initiation (Fig. 12) so that m controls the transition
from silent phase to active phase, while Iapp brings V up
to the point where m and V can enter a positive feed-
back loop.

4.4 Concluding remarks

Although the results of the contribution analysis depend on
channel kinetic parameters, some of the results shown here for
the Hodgkin-Huxley model may apply more generally to
oscillators controlled by negative feedback processes. For
instance, in excitatory neural networks that produce relaxation
oscillations, divisive feedback may be mediated by synaptic
depression, while subtractive feedback may be mediated by
spike frequency adaptation. Having both types of negative
feedback processes in these network models provides a larger
parameter space over which the network produces spontane-
ous episodic activity than in network models that incorporate
only one type of negative feedback (Tabak et al. 2006). Also,
in these network models both the divisive and subtractive
feedback control the duration of the active phase, but the
dynamics of the divisive feedback have no effect on the
duration of the silent phase (Tabak et al. 2011). This lack of
influence of the divisive feedback process in the excitatory
networks is also due to the fact that during the silent phase the
positive feedback process is not engaged, so recovery from
divisive feedback has little effect. Given that biological oscil-
lators generally involve fast positive feedback and one or
more slower negative feedback processes (Friesen and Block
1984; Ermentrout and Chow 2002; Tsai et al 2008), the results
obtained here with repetitive firing in the Hodgkin-Huxley
model, and previously with spontaneously active network
models, may be observed in a large class of biological
oscillators.
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