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Abstract

The solid-state NMR experiment PISEMA, is a technique for determining structures of proteins, especially membrane proteins, from
oriented samples. One method for determining the structure is to find orientations of local molecular frames (peptide planes) with respect
to the unit magnetic field direction, B0. This is done using equations that compute the coordinates of this vector in the frames. This
requires an analysis of the PISEMA function and its degeneracies. As a measure of the sensitivity of peptide plane orientations to
the data, we use these equations to derive a formula for the intensity function in the powder pattern. With this function and other mea-
sures, we investigate the effect of small changes in peptide plane orientations depending on the location of the resonances in the powder
pattern spectrum. This gives us an indication of the change in lineshape due to mosaic spread and a way to interpret these in terms of an
orientational error bar.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Membrane proteins form an important class of proteins
in all genomes [1]. The application of solid-state nuclear
magnetic resonance (ssNMR) spectroscopy to aligned sam-
ples has proved to be a successful technique for the deter-
mination of the three-dimensional structure of these
proteins [2–6]. One such ssNMR experiment is PISEMA,
polarization inversion spin exchange at magic angle
[12,13]. This two-dimensional (2D) NMR experiment gives
the anisotropic 15N chemical shift and the 15N–1H dipolar
coupling for each labelled residue, providing information
on the orientation of peptide planes relative to the direction
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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of an external magnetic field. This information can then be
used to construct a model of the protein [6–11]. Determin-
ing the orientation of a local molecular frame is equivalent
to finding the coordinates of B0 in the frame [15] so it is
important to know how well the coordinates are deter-
mined by the data.

The aim of this paper is to quantify the sensitivity of the
calculated coordinates of B0 to small changes or errors in
experimental PISEMA measurements. As one measure,
we use powder pattern intensity. The powder pattern con-
sists of data points for all possible orientations [16]. For-
mulas for the intensity can be computed from the
gradients of the expressions for frequency as a function
of B0. The shape and intensity of 2D NMR powder pat-
terns has been investigated in detail in [14] and our analysis
for PISEMA involves a special case where one of the ten-
sors (dipolar) is traceless and symmetric.
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We compute an explicit formula for the intensity using
the Jacobian of the PISEMA transformation and relate this
to the sensitivity of the computed structure on the data.
The formula for intensity is completely general, with the
principal values and the relative tensor orientations
appearing as parameters. To avoid the problem of scaling
in the frequency plane, we focus on the relative intensity
between pairs of points. We also do some computation
on the effect of small changes in B0 on the chemical shift
and dipolar frequencies separately.

In these investigations degeneracies (or ambiguities)
[16,17] are encountered when solving for B0 from PISEMA
data. We derive an explicit formula for each of the degen-
eracies as a sequence of signs ±1. We relate this sequence of
signs to the position of the data point in the powder
pattern.

As an illustration, we examine data from the M2 trans-
membrane domain (L26–L43) in a lipid bilayer [6]. In this
example most of the data lie within low intensity regions of
the powder pattern, indicating that the structure obtained
from the PISEMA data will be robust to small errors in
the data while conversely, the linewidth due to mosaic
spread may be large.

2. Theory

2.1. Coordinate frames

To determine the coordinates of B0, it is necessary
to specify the reference coordinate frame. Often the
choice is the principal axis frame of the 15N chemical
shift tensor [16,17,19–21]. For the present analysis,
the equations are simpler when the principal axis frame
of the 15N–1H dipolar coupling tensor (NH dipolar
tensor) is used.

We first describe these two frames. Both the dipolar and
chemical shift tensors are fixed with respect to the peptide
plane. Both have the first and third vectors in the peptide
Fig. 1. (A) Vectors in the peptide plane. We assume that the principal axis direc
[11,19] made relative to the NH vector when b = �17�.
plane with the second vector a peptide plane normal chosen
in the direction CN

��!�NCa
��!

[16,21,22].
The NH dipolar tensor principal axis frame has the first

vector in the direction of the NH bond, the third vector
perpendicular to the first in the peptide plane. The princi-
pal axis frame for the chemical shift of the nitrogen is
(r11, r22, r33) with major principal axis as the third vector.
The coordinates of B0 in the principal axis frame for the
chemical shift are denoted by x, y, z, and in the principal
axis frame for the NH dipolar tensor by u, y, v. Note that
the coordinate y is the same in both frames.

The relationship between the two frames is given by the
angle b,

x ¼ u sin bþ v cos b

z ¼ u cos b� v sin b
ð1Þ

where b is the angle from r33 to the NH bond direction
around the peptide plane normal (Fig. 1). Experiments
show that b is approximately 17� [18].

2.2. PISEMA equations

The observables in the PISEMA experiment are the chem-
ical shift of the 15N frequency (ppm) and the magnitude of
the splitting of this signal by the dipolar coupling to the
bonded hydrogen (kHz). We write equations for the chemi-
cal shift r and dipolar splitting m in the principal axis frame
of the dipolar tensor, and we assume that the sign of m can
be determined (i.e, there is no sign degeneracy).

Suppose r33 > r22 > r11 are the principal values of the
chemical shift tensor. Then the PISEMA equations [16]
in the principal axis frame of the chemical shift tensor are

r ¼ r11x2 þ r22y2 þ r33z2

m ¼ mk
2

3ðx sin bþ z cos bÞ2 � 1
� �

.
ð2Þ

Substituting for x and z using (1) in (2), the PISEMA equa-
tions in the dipolar frame turn out to be
tions r11 and r33 for the chemical shift are in the peptide plane. (B) Angles
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r� r22 ¼ au2 þ 2buvþ cv2

2mþ mk
3mk

¼ u2
ð3Þ

where

a ¼ r11 sin2 bþ r33 cos2 b� r22;

b ¼ ðr11 � r33Þ sin b cos b;

c ¼ r11 cos2 bþ r33 sin2 b� r22.

ð4Þ

In deriving (3), we use the relationship between the coordi-
nates of B0 in the dipolar frame, i.e.,

u2 þ y2 þ v2 ¼ 1. ð5Þ
If b = 17� and r11 � 30 ppm, r22 � 50 ppm, r33 � 200

ppm, then a � 135 ppm, b � �48 ppm, and c � �5 ppm
with a positive, b and c negative.

We also define the discriminant by

f ¼ b2 � ac. ð6Þ
Fig. 2. The PISEMA powder pattern. The ellipse is enclosed in a rectangle
with sides as indicated. The r, m coordinates of points shown is given in
(12) and in [16]. The tangent line QS2 is given by cðr� r22Þ ¼ �f ð2mþmk

3mk
Þ.

Following NMR conventions, the positive direction for the r axis points
to the left.
2.3. The PISEMA function and its inverse

Eq. (3) give a transformation from the B0 sphere
u2 + y2 + v2 = 1 into the frequency plane (r, m). The trans-
formation is the PISEMA function [16] and the image is the
(singlet) powder pattern.

2.3.1. The PISEMA function simplified

From now onwards, we use ~r ¼ r� r22 and ~m ¼ 2mþmk
3mk

.
Our ~r is not the same as that in [16].

Eq. (3) is further simplified by the introduction of new
variables

w ¼ buþ cv

f ¼ c~rþ f~m.
ð7Þ

Now (3) simplifies to

f ¼ w2

~m ¼ u2.
ð8Þ

From (8) it follows that the eight points

ð�u;�y;�wÞ ð9Þ
give the same values for ~r and ~m. The existence of multiple
solutions is referred to as a degeneracy or ambiguity. As we
show below, depending on ~r and ~m there may be only four
of these solutions corresponding to points B0 on the sphere.

2.3.2. Inverse of the PISEMA function and degeneracies

To solve for B0 from the data, the PISEMA function
needs to be inverted. This was done in [16] in terms of
degeneracies {e1, e2, e3, e4} for the coordinates of B0 in the
principal axis frame of the chemical shift tensor. Since we
are assuming that the sign of the dipolar is resolved we
are considering e1 = 1. In terms of these degeneracies using
(5), (7), and (8), the inverse in our reference frame can be
shown to be:
u ¼ e2

ffiffiffi
~m
p

w ¼ e3

ffiffiffi
f

p

y ¼ e4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2
c2 � ðc2 þ b2Þ~m� fþ 2e2e3b

ffiffiffiffiffi
~mf

ph ir
.

ð10Þ
2.4. The PISEMA powder pattern

The PISEMA powder pattern is the image of the disk
u2 + v2

6 1 under (3) (see Fig. 2). From (8) it follows that
the powder pattern is in the sector

~m P 0 f P 0. ð11Þ
The powder pattern can be described as the union of the

interior of an ellipse and the interior of a triangle with one
elliptical side (see Fig. 2). As shown below, in some cases of
interest the triangle can be very small, smaller than in
(Fig. 2).

The r, m coordinates of points Q, S2 shown in (Fig. 2)
are:

Q ¼ ðr22;
�mk

2
Þ

S2 ¼
1

b2 þ c2
�fcþ r22ðb2 þ c2Þ; ð2c2 � b2Þmk

2

� �
:

ð12Þ
2.4.1. The PISEMA ellipse

The inequality u2 + v2
6 1 becomes, using the third

equation in (10)

fþ ~mðb2 þ c2Þ � c2
6 2be2e3

ffiffiffiffiffi
f~m

p
. ð13Þ

The equation u2 + v2 = 1 becomes



Fig. 3. Degeneracies of the PISEMA function. There are four possible
points B0 corresponding to the point shown within the ellipse in the
frequency plane. These correspond to an appropriate choice of (e2,e3, e4) as
shown in the figure. Here r is the chemical shift and m is the dipolar
interaction frequency.
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fþ ~mðb2 þ c2Þ � c2
� 	2 ¼ 4b2f~m ð14Þ

and this is the equation of the PISEMA ellipse. Thus when
B0 is in the peptide plane, the corresponding point in the
frequency plane is on the ellipse. The ellipse with interior
is given by

fþ ~mðb2 þ c2Þ � c2
� 	2

6 4b2f~m. ð15Þ

In case b < 0 Eqs. (15) and (13) show that for points within
the ellipse, inequality (15) can hold only if e2e3 = �1. Thus
within the PISEMA ellipse e2 = �e3 and there are at most
two possible solutions of (10) (thus at most four points on
the B0 sphere, see Fig. 3).

In Fig. 4 the two solid lines divide the disk into four sec-
tors given by (e2, e3) equal to (1, 1), (1,�1), (�1,1),
(�1,�1). The two large sectors correspond to (1,�1) and
Fig. 4. Regions ±R1 and ±R2 in the u,v plane map to the PISEMA triangle
directions for the chemical shift tensor. The region inside the dashed ellipse map
in polar coordinates by h = h1 = arctanjc/bj. The points labelled * map onto t
(�1,1) and the analysis above shows that points mapping
to the ellipse are in these two sectors. Below we show that
part of these sectors is also mapped outside the ellipse.

Transforming Eq. (14) of the ellipse into standard form,
it can be shown that

area of PISEMA ellipse ¼
Z Z

PISEMA
ellipse

d~rd~m ¼ pjbj
2

. ð16Þ
2.4.2. The PISEMA triangle

Using (14), we see that the lines ~m ¼ 0 and f = 0 are tan-
gent to the ellipse at the points S1 and S2 (Fig. 2). The sec-
tor ~m P 0, f P 0 outside the ellipse is called the PISEMA

triangle.

2.4.3. Points mapping to the triangle
The lines bu + cv = 0 and u = 0 map to sides QS2 and

QS1, respectively, of the PISEMA triangle (see Fig. 2). This
triangle has one curved edge from S1 to S2 which is the
image of the part of the circle u2 + v2 = 1 in the sector
w = bu + cv 6 0, u 6 0. Write u2 + v2 = 1 as

u2 þ w� bu
c


 �2

¼ 1.

Eq. (8) shows that leaving w fixed and changing the sign of
u does not change the image under the PISEMA function.
Thus

u2 þ wþ bu
c


 �2

¼ 1 ð17Þ

also maps onto the curved edge of the triangle. This is an
ellipse (dashed ellipse in Fig. 4). The region inside the circle
and the dotted ellipse maps onto the PISEMA triangle.
This large area mapping onto the small triangle indicates
the possibility of a large error. The error can be quantified
locally using an intensity function.
. The points r11 and r33 on the boundary of the disk are principal axis
s to the PISEMA triangle. The diagonal line is given by w = bu + cv = 0 or
he sweet spot.



Fig. 5. A contour plot of the intensity within the PISEMA ellipse. The
intensity is small near the ellipse center, and large near the edge. A star
denotes the point of minimum intensity, the sweet spot. Data points for
M2 are indicated with circles. For the chemical shift principal values and b
angle used here the triangle is too small to be seen.
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2.5. Powder pattern intensity

We define the intensity of a region in the powder pattern
as the proportion of the area on the B0 sphere that maps
onto the region. It is one measure of the sensitivity of the
coordinates of B0 to error in the data. The higher the inten-
sity, the greater the possibility of error in B0.

The local intensity is computed from the Jacobian of the
PISEMA function. Suppose the B0 sphere is normalized so
that the total area is 1, then

dX ¼ 1

2pjyj du dv ð18Þ

is the infinitesimal area from the two points on the B0

sphere (u,±y,v). By taking the Jacobian of the transforma-
tion (3) we get

d~rd~m ¼ 4juwjdudv ð19Þ
and by (18) and (19), the intensity from the two points is

Intensity ¼ dX
d~rd~m

¼ 1

8pjuwyj . ð20Þ

The intensity is infinite at points on the ellipse (y = 0) and
on the straight line edges of the PISEMA triangle (w = 0
and u = 0). In the first case (y = 0), B0 is in the peptide
plane.

Using (10) and substituting for u, w, and y, the intensity
function (20) can be written as a function in the frequency
plane

Intensityeð~r;~mÞ¼ jcj
8p

c2~mf�ðc2þb2Þ ~mð Þ2f�~mf2þ2eb ~mfð Þ
3
2

� ��1
2

ð21Þ

where the superscript e = e2e3 = ± 1.
At a point inside the ellipse e = �1 and

dX ¼ 2Intensity�d~rd~m ð22Þ
where (20) has been multiplied by two since each point
in the ellipse corresponds to two points in the circle.
The total intensity for a region in the ellipse is obtained
by integrating (22) over the region, or equivalently by
integrating (20) over the region in the (u,v) plane which
maps onto it.

For a region in the PISEMA triangle the contributions
for e = ± 1 should be added,

dX ¼ 2ðIntensityþ þ Intensity�Þd~rd~m. ð23Þ
The level curves for intensity have been plotted in Fig. (5).
The figure also shows the point of minimum intensity at
(r,m) = (136,5.26). This point is called the sweet spot (see
below). There is a rapid increase in intensity as the bound-
ary is approached.

Intensity is related to the ratio of the magnitudes of
changes on the B0 sphere to changes in the frequency plane.
The change in frequency can be interpreted as error in the
determination of the spectral peak.

More precisely, let
ds2
B0
¼ du2 þ dv2 þ dy2 ds2

~r~m ¼ d~r2 þ d~m2. ð24Þ

The intensity

dX
d~rd~m

¼ dsB0

ds~r~m

� �
max

dsB0

ds~r~m

� �
min

ð25Þ

is the product of the maximum and minimum ratios
dsB0

=ds~r~m at a point. If the intensity is large at a point in
the frequency plane, there can be a direction with a large
error in the determination of the coordinates of B0. A com-
plete analysis of the error requires an analysis of the depen-
dence of error on the direction of the error vector. In the
section on mosaic spread below, we analyze the error for
r and m separately at several data points.

To properly interpret ds~r~m, which is a combination of
chemical shift and dipolar error, r and m should be scaled
so that the experimental error is roughly the same for both
observables. In the analysis below we take the ratio of
intensities at two points, so this scaling cancels out and will
not affect the result.

2.6. Intensity and area of the PISEMA ellipse and

triangle

The PISEMA triangle has very small area in relation to
the area of the powder pattern, but the intensity there is
significant. This indicates the possibility of large error if
the data point is in the triangle. The calculations are
sketched below.

2.6.1. Area of the triangle
In the following, the area of the PISEMA triangle is

computed. The sector u > 0, bu + cv < 0 (e2 > 0, e3 < 0) of
the circle maps once onto the powder pattern. The area
of the powder pattern can be obtained by integrating (19)
over this sector. The resulting area is
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area of powder pattern ¼
Z Z

powder pattern

d~rd~m

¼ 1

2
jcj þ jbjðp� h1Þð Þ ð26Þ

where h1 = arctan |c/b|. Since from (16) the area inside the
ellipse is p|b|/2, it follows that

area of triangle ¼ 1
2
jcj � jbjh1ð Þ. ð27Þ
Fig. 6. Relative intensities for the M2 data points shown in Fig. 5. SS is
the sweet spot. Here, the intensities were calculated using (21).
2.6.2. Intensity of the triangle

From (Fig. 4), the intensity of the PISEMA triangle is

2

Z Z
R1

dXþ 2

Z Z
R2

dX. ð28Þ

In polar coordinates,

dX ¼ 1

2p
rdr dhffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p . ð29Þ

The integral over R1 can be found in closed form,Z Z
R1

dX ¼ 1

2p
h1. ð30Þ

The integral over R2 does not have a convenient closed
form, but (17) gives an explicit equation for the boundary
of R2 and the integral can be done numerically.

3. Discussion

3.1. Numerical computation

Results are shown in the case where

r11 ¼ 31ppm r22 ¼ 55ppm r33 ¼ 202ppm b ¼ 17�.

Using (4) we obtain

a ¼ 132ppm b ¼ �48ppm c ¼ �9 ppm f ¼ 3504.

The angle h1 in (30) is .19 radians (11�) and the integral
(30) is .03. The integral of dX over R2 is computed using
numerical integration to be .02. Thus by (28) the total
intensity for the region of the powder pattern outside the
ellipse is 2(.03 + .02) = .1 or 10%, consistent with an earlier
Monte Carlo simulation [20]. On the other hand, using (26)
and (27),

area of triangle

area of powder pattern
¼ .0008.

Although the triangle is .08% of the area of the powder pat-
ten it accounts for 10% of the powder pattern intensity
even in the situation where the triangle is very small. Points
that are close together within the triangle can map back to
distant points in the u,v plane, so points in the triangle are
very sensitive to error in the determination of the peptide
plane orientation.
3.2. The sweet spot

The point in the frequency plane where the intensity is
smallest we call the sweet spot. The coordinates (r,m) of
the sweet spot are found by finding the corresponding
points in the (u,v) plane which maximize the denominator
in (20),

jðbuþ cvÞuj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 � v2
p

. ð31Þ
Setting both partial derivatives equal to zero and solving
using b and c from the above example, we get (u,v) =
(0.81, 0.08). This maps to the sweet spot (r,m) =
(136,5.26) (Fig. 5). A useful measure of relative error at a
point in the frequency plane is the ratio of the intensity
there to the intensity at the sweet spot.

3.3. Experimental data

As an application of the intensity analysis, we use
PISEMA data from the M2 transmembrane domain
of the proton channel (M2-TMD) [6]. The data for
14 out of the 18 transmembrane residues were obtained
by PISEMA. These data are plotted in Fig. 5. The
intensity ratio of each residue in the transmembrane
region of M2 with respect to the sweet spot, Ir, is giv-
en in Fig. 6. Resonances for A29, I33, and L38 are
clearly closest to the edge of the ellipse compared to
resonances for other residues and hence they have a
higher Ir.

The interpretation of the spectral frequencies from
PISEMA data is dependent on solving the degeneracy
problem which has been addressed here and elsewhere
[16,17] and in specifically determining the resonance fre-
quency, which may have a considerable linewidth. Line-
widths can be inhomogeneous, reflecting a mosaic
spread of orientation, or homogeneous reflecting efficient
T2 relaxation. We next examine the influence of mosaic
spread and the component of linewidth due to mosaic
spread.
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3.4. Mosaic spread or frequency dependent contributions to

linewidth

Solid-state NMR experiments such as PISEMA are per-
formed on aligned samples, and are subject to errors in
alignment often characterized by a mosaic spread of orien-
tations. There are a variety of reasons for such misalign-
ment [23]. For membrane proteins the mosaic spread
reflects the variation of B0 in the principal axis frame and
can be interpreted as a maximum angle or as a probability
distribution.

Mosaic spread of a membrane protein can be modeled
by a probability distribution on the set of rotation matri-
ces, each rotation representing a perturbation of the sample
in the lab frame. The sample is assumed to be rigid, so that
the same rotation is applied to each of the molecular
frames in the sample. The rotation matrix is given as
R (a,b,c) in terms of Euler angles. A simple model for
mosaic spread is obtained by taking a probability distribu-
tion of the form p (b) sin (b)dadbdc, where p is a Gaussian
distribution with mean 0 [24]. Another possibility is a uni-
form distribution of mean 0 obtained by choosing p to be a
constant in the interval from 0 to e. In these models the dis-
tribution of the angles a and c is uniform.

For simplicity we choose p as above to be constant. The
Z axis in the lab frame corresponds to the magnetic field
direction so in each molecular frame B0 is distributed uni-
formly in a circle of spherical radius dsB0

about the average
direction. An indication of the effect on the frequencies is
obtained by looking at the image in the frequency plane
of this circle. The image obtained is the footprint of the line-
shape on the frequency plane. The values of dsB0

consid-
ered here were 2�, 4�, and 8�.

As Eq. (25) shows, the intensity is related to the range in
chemical shift and dipolar frequency. Here we analyze the
effect of mosaic spread for the M2-TMD data points.
Unlike other contributions to the linewidths which may
have a fixed magnitude in the PISEMA frequency plane,
we assume a fixed mosaic spread on the unit sphere. Think
of the mosaic spread of the aligned sample as a small circle
of radius dsB0

on the unit sphere representing a range of
values for B0. When a circle of radius dsB0

is mapped to
Fig. 7. Circles of radii 2�, 4�, and 8� on the B0 unit sphere are mapped into th
TMD, as well as a few simulated points in the top half and bottom half of the P
sample alignment.
the frequency plane the footprint of the lineshape has a
nearly elliptical image (Fig. 7). Let d~r and d~m denote the
difference between the maximum and minimum values of
~r and ~m, respectively. These represent the linewidth, or in
this case range in spectral intensity, in each dimension
caused by the mosaic spread.

The linewidths scale approximately linearly with the
degree spread in the spectral region, so that the linewidths
for a 4� spread are approximately twice the linewidths for a
2� spread. An illustration involving three experimental data
points and four simulated data points is shown in Fig. 7.
We observe that among the recorded data points L38 has
the largest chemical shift linewidth and the least dipolar
linewidth, while W41 has the least chemical shift linewidth
and V28 has the largest dipolar linewidth.

3.5. Frequency independent contributions to linewidth

While the contribution of mosaic spread to linewidths is
dependent on the frequency position in the PISEMA fre-
quency plane, there are other contributions that are inde-
pendent or nearly independent of the frequency position
in the plane. These latter homogeneous contributions can
result in heterogeneous error bars in the interpretation of
the dipolar splitting and chemical shift frequency. By con-
sidering two points in different intensity regions of the fre-
quency plane but with the same linewidth (or error bars) in
the chemical shift direction, we show in Fig. 8 that the cor-
responding error bars on the B0 unit sphere are quite differ-
ent. We showed that a fixed mosaic spread angle resulted in
large frequency ranges near the sweet spot. Similarly, a
fixed frequency range for a resonance near the sweet spot
results in a narrow orientational range on the B0 unit
sphere compared to a resonance in a high intensity region
of the PISEMA ellipse.

4. Conclusions

Structure determination by solid-state NMR requires
finding the orientation of frames within the molecule with
respect to B0. This is equivalent to finding the coordinates
of B0 in the frames. The functions giving B0 in terms of the
e PISEMA frequency plane for V28, L38, and W41 data points from M2-
ISEMA ellipse. These show the effect of mosaic spread due to variations in



Fig. 8. Sensitivity to experimental errors of the coordinates on the B0

sphere of data points P and Q in the low and high intensity regions
respectively of the PISEMA ellipse. Assume that these data points have a
fixed experimental error bar of 5 ppm in their chemical shift measurements
in the frequency plane. Let DB0 (P) and DB0 (Q) represent the error bars
(arc length) on the B0 sphere of one out of the four possible unit magnetic
field vectors corresponding to points P and Q. By computing DB0 (P) and
DB0 (Q) we observe that the accuracy of the B0 coordinates depend on the
position of the data points on the frequency plane. The coordinates of B0

is not reliable if the data point lies in a high intensity region since in this
case DB0 (Q) is large. However the coordinates of B0 is accurate if it lies in
the low intensity region as seen by a relatively small DB0 (P).
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data can be differentiated, numerically or analytically, to
determine how accurately the data determines the orienta-
tion. A change in B0 occurs corresponding to changes in
the chemical shift and dipolar frequencies, and depends
upon the location of the data point on the PISEMA fre-
quency plane. In a 2D experiment such as PISEMA the
equations are simple enough to obtain some expressions
analytically and to easily calculate others numerically.
The powder pattern intensity corresponds to the propor-
tion of the area on the B0 sphere that maps onto a given
frequency region. An analytical expression for the powder
pattern intensity can be found easily. We have demonstrat-
ed that regions near the edge of the PISEMA ellipse and in
the PISEMA triangle have higher intensities.

In aligned membrane peptides and protein samples
mosaic spread values have been reported that range from
±0.2� [25] to ±10� [26]. While few of the observed
PISEMA resonances have displayed images similar to
Fig. 7, there have been very few examples of high signal
to noise spectra. Higher magnetic field strengths and opti-
mized radio frequency probes are dramatically improving
PISEMA sensitivity, and consequently for those samples
with significant mosaic spread it can be anticipated that
such footprints of lineshapes will be observed in the
future. In the absence of significant mosaic spread these
will be dominated by other factors such as relaxation
rates.

Importantly, it is the interpretation of the dipolar and
chemical shift frequencies from the PISEMA spectra that
leads to the characterization of protein backbone structure
and alignment with respect to the membrane environment.
From the analysis presented here it is possible to under-
stand the lineshapes observed in the PISEMA spectra
and the implication of these as orientational error bars.
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