1. Let X and Y be sets. Prove the following statements.

(i) If there is a surjection $f: X \to Y$, then $|X| \geq |Y|$.

(ii) If there exists surjections $f: X \to Y$ and $g: Y \to X$, then $|X| = |Y|$.

(iii) If there exists an injection $f: X \to Y$ and a surjection $g: X \to Y$, then $|X| = |Y|$.

2. Let X be a set. The **power set** of X is denoted as 2^X and is defined as the set of all subsets of X. Thus, $A \subset X$ means exactly the same as $A \in 2^X$. For example, if $X = \{1, 2, 3\}$,

\[
2^X = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.
\]

(i) If X is finite with $|X| = n \in \mathbb{N} \cup \{0\}$, prove that $|2^X| = 2^n$.

(ii) For any sets X and Y, prove that $|X| = |Y| \Rightarrow |2^X| = |2^Y|$.

3. Prove that for any set X, $|X| < |2^X|$.

 Hint: For any function $g: X \to 2^X$, define $A_g = \{x \in X : x \notin g(x)\}$. Show that $A_g \notin g(X)$, hence g is not surjective.

4. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following statements.

 (i) f and g injective $\Rightarrow g \circ f$ injective.

 (ii) f and g surjective $\Rightarrow g \circ f$ surjective.

 (iii) $g \circ f$ injective $\Rightarrow f$ injective.

 (iv) $g \circ f$ surjective $\Rightarrow g$ surjective.

 (v) Give specific examples to show that g need not be injective whenever $g \circ f$ is injective and that f need not be surjective whenever $g \circ f$ is surjective.

 (vi) For any subset $C \subset Z$, $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.

 (vi) For $A \subset X$ and $B \subset Y$, $A \subset f^{-1}(f(A))$ and $f(f^{-1}(B)) \subset B$.
5. A **binary sequence** is an infinite list of zeroes and ones, i.e., \(b \) is a binary sequence means that \(b = b_1, b_2, b_3, \ldots, b_i, \ldots \), where each \(b_i \in \{0, 1\} \). Let \(B \) be the set of all binary sequences. Let \(A \) be the subset of \(B \) containing only those sequences that have finitely many ones and let \(C \) be the subset of \(B \) containing only those sequences that have no consecutive ones. Thus,

\[
A = \{ b \in B : \exists N \in \mathbb{N} \text{ such that } b_i = 0 \ \forall i \geq N \}, \\
C = \{ b \in B : \forall i, b_i = 1 \implies b_{i+1} = 0 \}.
\]

(i) Use a Cantor diagonal argument to show that \(B \) is uncountable.

(ii) Prove that \(A \) is countably infinite.

(iii) Decide whether or not \(C \) is countable and prove your contention.