1. The identity function \(\text{id}_X: X \to X \) on the set \(X \) is defined by \(\text{id}_X(x) = x \) for all \(x \in X \). Let \(f: X \to Y \) be a function. Prove that \(f \) is a bijection if and only if there exists \(g: Y \to X \) such that \(g \circ f = \text{id}_X \) and \(f \circ g = \text{id}_Y \).

2. Define \(f: \mathbb{N} \to \mathbb{Z}^* = \{ \alpha \in \mathbb{Z}: \alpha \neq 0 \} \) by

\[
f(\alpha) = (-1)^\alpha \left\lfloor \frac{\alpha + 1}{2} \right\rfloor.
\]

Note that \(f(\alpha) = \alpha/2 \) if \(\alpha \) is even and \(f(\alpha) = -(\alpha + 1)/2 \) if \(\alpha \) is odd. Prove that \(f \) is a bijection by exhibiting a function \(g: \mathbb{Z}^* \to \mathbb{N} \) for which \(g \circ f = \text{id}_\mathbb{N} \) and \(f \circ g = \text{id}_{\mathbb{Z}^*} \).

3. This exercise gives an explicit formula for a bijection from \(\mathbb{N} \) to \(\mathbb{Q}^+ \), the set of positive rationals. It is based on the unique factorization of integers into primes. Let \(f: \mathbb{N} \to \mathbb{Z}^* \) be any bijection (for example, the one of the previous exercise). For \(n \in \mathbb{N} \), let \(n = \text{lp}_1^{\alpha_1} \cdots p_s^{\alpha_s} \) where \(p_1, p_2, \ldots, p_s \) are distinct primes, \(\alpha_i \in \mathbb{N} \), and \(s \geq 0 \) is an integer (\(s = 0 \) means that \(n = 1 \)). Define

\[
g(n) = 1p_1^{f(\alpha_1)} \cdots p_s^{f(\alpha_s)} \in \mathbb{Q}^+.
\]

By uniqueness of prime decompositions, \(g(n) \) defines a function \(g: \mathbb{N} \to \mathbb{Q}^+ \). Notice that \(g(1) = 1 \). Prove that \(g \) is a bijection. Hint: Define \(h: \mathbb{Q}^+ \to \mathbb{N} \) by the following process. For \(r \in \mathbb{Q}^+ \), write \(r = a/b \) where \(a, b \in \mathbb{N} \) are relatively prime integers. Write \(a = 1p_1^{\alpha_1} \cdots p_s^{\alpha_s} \), \(b = 1q_1^{\beta_1} \cdots q_t^{\beta_t} \), and note that \(p_i \neq q_j \) for all \(i \) and \(j \). Define

\[
h(r) = 1p_1^{f^{-1}(\alpha_1)} \cdots p_s^{f^{-1}(\alpha_s)}q_1^{f^{-1}(\beta_1)} \cdots q_t^{f^{-1}(\beta_t)}.
\]

Prove that \(h \circ g = \text{id}_\mathbb{N} \) and \(g \circ h = \text{id}_{\mathbb{Q}^+} \).

4. Let \(X, d \) be a metric space. For each \(x \in X \) and nonempty subsets \(A \) and \(B \) of \(X \), define

\[
d(x, A) = \inf\{d(x, a): a \in A\}
\]
\[
d(A, B) = \inf\{d(a, b): a \in A, b \in B\}.
\]

(i) Prove that \(d(x, A) = 0 \iff x \in \overline{A} \).

(ii) Give an example of closed, disjoint subsets \(A \) and \(B \) of the plane \(\mathbb{R}^2 \) for which \(d(A, B) = 0 \).

(iii) If \(A \) and \(B \) are closed and disjoint, show that there are open sets \(U \) and \(V \) with \(A \subset U \), \(B \subset V \), and \(U \cap V = \emptyset \).

(iv) If \(A \) is compact, \(B \) is closed, and \(A \) and \(B \) are disjoint, show that \(d(A, B) \) is nonzero.