MAA 4226 Advanced Calculus Ho

Homework Set 4

Bowers Fall 2000

- 1. The **identity function** $\operatorname{id}_X: X \to X$ on the set X is defined by $\operatorname{id}_X(x) = x$ for all $x \in X$. Let $f: X \to Y$ be a function. Prove that f is a bijection if and only if there exists $g: Y \to X$ such that $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$.
- 2. Define $f: \mathbf{N} \to \mathbf{Z}^* = \{ \alpha \in \mathbf{Z} : \alpha \neq 0 \}$ by

$$f(\alpha) = (-1)^{\alpha} \left\lfloor \frac{\alpha + 1}{2} \right\rfloor$$

Note that $f(\alpha) = \alpha/2$ if α is even and $f(\alpha) = -(\alpha+1)/2$ if α is odd. Prove that f is a bijection by exhibiting a function $g: \mathbb{Z}^* \to \mathbb{N}$ for which $g \circ f = \operatorname{id}_{\mathbb{N}}$ and $f \circ g = \operatorname{id}_{\mathbb{Z}^*}$.

3. This exercise gives an explicit formula for a bijection from \mathbf{N} to \mathbf{Q}^+ , the set of positive rationals. It is based on the unique factorization of integers into primes. Let $f: \mathbf{N} \to \mathbf{Z}^*$ be any bijection (for example, the one of the previous exercise). For $n \in \mathbf{N}$, let $n = 1p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ where $p_1, p_2, \cdots p_s$ are distinct primes, $\alpha_i \in \mathbf{N}$, and $s \ge 0$ is an integer (s = 0 means that n = 1). Define

$$g(n) = 1p_1^{f(\alpha_1)} \cdots p_s^{f(\alpha_s)} \in \mathbf{Q}^+.$$

By uniqueness of prime decompositions, g(n) defines a function $g: \mathbf{N} \to \mathbf{Q}^+$. Notice that g(1) = 1. Prove that g is a bijection. HINT: Define $h: \mathbf{Q}^+ \to \mathbf{N}$ by the following process. For $r \in \mathbf{Q}^+$, write r = a/b where $a, b \in \mathbf{N}$ are relatively prime integers. Write $a = 1p_1^{\alpha_1} \cdots p_s^{\alpha_s}$, $b = 1q_1^{\beta_1} \cdots q_t^{\beta_t}$, and note that $p_i \neq q_j$ for all i and j. Define

$$h(r) = 1p_1^{f^{-1}(\alpha_1)} \cdots p_s^{f^{-1}(\alpha_s)} q_1^{f^{-1}(-\beta_1)} \cdots q_t^{f^{-1}(-\beta_t)}.$$

Prove that $h \circ g = \operatorname{id}_{\mathbf{N}}$ and $g \circ h = \operatorname{id}_{\mathbf{Q}^+}$.

4. Let X, d be a metric space. For each $x \in X$ and nonempty subsets A and B of X, define

$$d(x, A) = \inf \{ d(x, a) : a \in A \}$$

$$d(A, B) = \inf \{ d(a, b) : a \in A, b \in B \}.$$

- (i) Prove that $d(x, A) = 0 \Leftrightarrow x \in \overline{A}$.
- (ii) Give an example of closed, disjoint subsets A and B of the plane \mathbb{R}^2 for which d(A, B) = 0.
- (iii) If A and B are closed and disjoint, show that there are open sets U and V with $A \subset U, B \subset V$, and $U \cap V = \emptyset$.
- (iv) If A is compact, B is closed, and A and B are disjoint, show that d(A, B) is nonzero.