MAS 3301 Modern Algebra Homework Set 3

Definitions. A set \mathbf{F} is a *ring* if addition and multiplication operations are defined on \mathbf{F} that satisfy all the field axioms except that multiplicative inverses are not required to exist for every element of \mathbf{F} . The standard example is the ring of integers \mathbf{Z} . A nonzero element a of \mathbf{F} is a zero divisor if there is a nonzero element b for which ab = 0. The ring of integers has no zero divisors. Exercise 2 below gives an example of a ring that does have zero divisors.

- 1. Let \mathbf{F} be a ring.
 - (i) Show that if a is a zero divisor of \mathbf{F} , then a fails to have a multiplicative inverse.
 - (ii) Show that a field has no zero divisors.
- 2. Recall that the dual numbers are exactly like the complex numbers except that $i^2 = 1$. The dual numbers satisfy all the field axioms except that multiplicative inverses sometimes fail to exist. The multiplicative identity for the dual numbers is, as for the complex numbers, 1 = 1 + 0i. The dual numbers do form a ring.
 - (i) Find the multiplicative inverse of 1 + 2i (which does exist), and show that 1 + i does not have a multiplicative inverse (Hint: for the second assertion use exercise 1(i)).
 - (ii) Characterize those dual numbers a + bi that do have a multiplicative inverse, ie, find conditions on a and b that determine whether or not $(a + bi)^{-1}$ exists.
 - (iii) Find a general formula for $(a + bi)^{-1}$ when it exists.
- 3. The double numbers are defined exactly like the complex and dual numbers except that $i^2 = 0$. Again, 1 = 1 + 0i is the multiplicative identity.
 - (i) Find the multiplicative inverses of 1 + 2i and 1 + i (both exist). Show that i^{-1} fails to exist.
 - (ii) Characterize those double numbers a + bi that do have a multiplicative inverse, ie, find conditions on a and b that determine whether or not $(a + bi)^{-1}$ exists.
 - (iii) Find a general formula for $(a + bi)^{-1}$ when it exists.

4. Let $\mathbf{D} = \{(a,b): a, b \in \mathbf{R}\}$ with (a,b) + (c,d) = (a+c,b+d) and $(a,b) \times (c,d) = (ac^2, bd^2)$.

- (i) Is \times commutative? associative?
- (ii) The element I of \mathbf{D} is a right identity if $z \times I = z$ for all z in \mathbf{D} and a left identity if $I \times z = z$ for every z in \mathbf{D} . Find all the right identities in \mathbf{D} (there are several).
- (iii) Are there any left identities in **D**? Why or why not?