MAS 3301 Modern Algebra Homework Set 4

- 1. Let $\mathbf{F} = (0, \infty) = \{x \in \mathbf{R} : x > 0\}$, the set of positive real numbers. We use the symbols \oplus and \otimes to denote the following operations on \mathbf{F} : for $a, b \in \mathbf{F}$, $a \oplus b = ab$ and $a \otimes b = a^{\ln b}$. For items (i) and (ii) below, you might find useful the calculus formulas $a^x = e^{x \ln a}$, $e^{\ln x} = x$, $\ln e^x = x$, and the laws of exponents and logarithms.
 - (i) Show that \mathbf{F} is a field under \oplus -addition and \otimes -multiplication.
 - (ii) Define $h: \mathbf{R} \to \mathbf{F}$ by $h(x) = e^x$. Show that for any two reals $a, b \in \mathbf{R}$,

$$h(a+b) = h(a) \oplus h(b)$$
 and $h(ab) = h(a) \otimes h(b)$.

- 2. Let **H** denote the quaternions and recall that a typical quaternion q can be written $q = q_0 + q_1 i + q_2 j + q_3 k$ where the q_n 's are real numbers. The q_0 term is the real part of q and the term $\vec{q} = q_1 i + q_2 j + q_3 k$ is the vector part of q, so we have $q = q_0 + \vec{q}$. If $q_0 = 0$, $q = \vec{q}$ is then called a *pure* quaternion and is a vector in \mathbb{R}^3 . Multiplication of quaternions is performed using the usual associative and distributive laws, but the commutative law fails to hold. The unit vectors $i = \hat{i}, j = \hat{j}, k = \hat{k}$ multiply as follows: $i^2 = j^2 = k^2 = -1$, ij = k = -ji, jk = i = -kj, and ki = j = -ik.
 - (i) Show that for any pure quaternion q, $q^2 = -(q_1^2 + q_2^2 + q_3^2)$.
 - (ii) Two pure quaternions p and q are said to be orthogonal if their dot product $p \cdot q = \vec{p} \cdot \vec{q} = p_1 q_1 + p_2 q_2 + p_3 q_3$ is equal to 0. Show that if p and q are orthogonal, then pq = -qp.
 - (iii) Show that every quaternion q can be written in the form z + wj for some complex numbers z and w.
 - (iv) Show that every quaternion q can be written in the form u + jv for some complex numbers u and v.
 - (v) If z + wj = q = u + jv as in (iii) and (iv), what is the relationship between z and u and between w and v?
- 3. Simplify each expression, writing each quaternion in the standard form $q = q_0 + q_1 i + q_2 j + q_3 k = q_0 + \vec{q}$.

(i)
$$\frac{7-i}{j+k}$$
; (ii) $(1+i)(1+j) - (1+j)(1+i)$; (iii) $\frac{1}{i+j+k}$

- 4. Recall that the dot product of arbitrary quaternions p and q is given by $p \cdot q = p_0q_0 + p_1q_1 + p_2q_2 + p_3q_3$, and the cross product of pure quaternions $p = \vec{p}$ and $q = \vec{q}$ is given by $p \times q = (p_2q_3 p_3q_2)i + (p_3q_1 p_1q_3)j + (p_1q_2 p_2q_1)k$.
 - (i) Show that for any two quaternions p and q, the dot product can be written as $p \cdot q = \frac{1}{2}(\overline{p}q + \overline{q}p).$
 - (ii) Show that for any two pure quaternions $p = \vec{p}$ and $q = \vec{q}$, the cross product can be written as $p \times q = pq + p \cdot q$.