MAS 3301 Modern Algebra Homework Set 7

Recall that a group G is a set of elements with a binary operation \star that satisfies the following group axioms:

GA0: Closure. For each $a, b \in G$, $a \star b \in G$;

GA1: Associative. For each $a, b, c \in G$, $a \star (b \star c) = (a \star b) \star c$;

GA2: Identity. There exists a \star -identity, an element $e \in G$ such that $a \star e = e \star a = a$, for all $a \in G$;

GA3: Inverses. For each $a \in G$, there exists a \star -inverse, an element $b \in G$ such that $a \star b = b \star a = e$.

The order of the group G, denoted o(G), is the number of elements in G if G is finite, and equal to ∞ otherwise. The order of the element a of G is the least positive integer o(a) = n for which the *n*-fold \star -product $a^n = a \star \cdots \star a$ is equal to the identity e, if such nexists; otherwise $o(a) = \infty$. Note that o(e) = 1. G is cyclic if there is at least one element g in G such that every other element a of G is a power of g, ie, if for each $a \in G$, there exists $k \in \mathbb{Z}$ such that $a = g^k$. In this case, g is called a generator of G.

1. Find the order of the element a of the group G.

(i)
$$a = \overline{3}, G = \mathbf{Z}/10, +$$

(ii) $a = \overline{3}, G = (\mathbf{Z}/10)^*, \times$
(iii) $a = \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, G = \operatorname{GL}(2, \mathbf{R})$

2. Which of the following groups are cyclic? For any that are, name all the generators.

$$Z/4, + (Z/5)^*, \times F_4, + \{\pm 1, \pm i\}, \times (Z/10)^*, \times Z/2 \oplus Z/2, + (Z/8)^*, \times Z/8 \oplus Z/2, + (Z/8)^*, + ($$

- 3. All the groups listed in Problem 2 have order 4. Which are isomorphic to which? Describe explicit isomorphisms.
- 4. What is the order of the group $(\mathbf{Z}/100)^*, \times$? What is the order of the element $\overline{7}$ in $(\mathbf{Z}/100)^*, \times$?
- 5. What are the possible orders of the elements of $(\mathbf{Z}/100)^*$, ×? Answer the same question for $\mathbf{Z}/100, +$.
- 6. Let G, \times and H, \times be multiplicative groups. Define an operation \star on $G \times H = \{(g,h): g \in G, h \in H\}$ by $(g,h) \star (g',h') = (gg',hh')$. Verify that $G \times H, \star$ is a group. What is the order of $G \times H$ in terms of o(G) and o(H)?