MAS 3301 Modern Algebra Homework Set 8

- 1. Using Lagrange's Theorem, explain why every group of prime order is cyclic.
- 2. Describe all isomorphisms from $\mathbf{Z} \oplus \mathbf{Z}$, + to the set $S = \{3^p 5^q : p, q \in \mathbf{Z}\}, \times$.
- 3. Identify the group of units in the ring $\mathbf{Z}/5 \oplus \mathbf{Z}/6$ and write a Cayley Table for the operation.
- 4. The group of Problem 3 has order 8. Which of the following groups is it isomorphic to?

 $\mathbf{Z}/8, +$ $\mathbf{Z}/2 \oplus \mathbf{Z}/4, +$ $\mathbf{Z}/2 \oplus \mathbf{Z}/2 \oplus \mathbf{Z}/2, +$ $\{\pm 1, \pm i, \pm j, \pm k\}, \times$

- 5. Let G, \times be a group in which every nonidentity element has order 2. Prove that G is abelian.
- 6. When is $\mathbf{Z}/m \oplus \mathbf{Z}/n$, + isomorphic to \mathbf{Z}/mn , +? Experiment with small values of m and n and note that \mathbf{Z}/mn , + is cyclic, so the question that is equivalent is: when is $\mathbf{Z}/m \oplus \mathbf{Z}/n$, + cyclic?
- 7. If G, \times is a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$, show that G must be abelian.
- 8. CHALLENGE PROBLEM: Prove that if the finite group G, \times has even order, then there is an element $a \in G$ of order 2.