Understanding 3–Manifolds by Their Character Variety

Alex Casella

1st Australian Algebra Conference

Joint work with C. Katerba and S. Tillmann

27th November 2017
Dictionary

n-manifold: a topological space that locally looks like \mathbb{R}^n (assume connected, compact and orientable);
Dictionary

- **3-manifold** M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);
Dictionary

- \textbf{3-manifold }\(M \): a topological space that locally looks like \(\mathbb{R}^3 \) (assume connected, compact and orientable);
- \textbf{Surface }\(S \): 2-manifold (with or without boundary);
Dictionary

- 3-manifold M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);
- Surface S: 2-manifold (with or without boundary);
- S (properly) **embedded** in M: there is a subset of M, homeomorphic to S, whose boundary is contained in the boundary of M.
3-manifold M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);

Surface S: 2-manifold (with or without boundary);

S (properly) **embedded** in M: there is a subset of M, homeomorphic to S, whose boundary is contained in the boundary of M.

![Diagram of a 3-manifold and a surface embedded in it]
3-manifold M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);

Surface S: 2-manifold (with or without boundary);

S (properly) embedded in M: is a subset of M, homeomorphic to S, whose boundary is contained in the boundary of M.

Irreducible M: every embedded 2-sphere bounds a 3-ball.
Dictionary

- **3-manifold** M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);
- **Surface** S: 2-manifold (with or without boundary);
- S (properly) embedded in M: is a subset of M, homeomorphic to S, whose boundary is contained in the boundary of M.
- **Irreducible** M: every embedded 2-sphere bounds a 3-ball.

 a) S^3 is irreducible;

 b) $(S^3 \setminus \text{knot})$ is irreducible;

 c) $(S^3 \setminus 2 \text{knots})$ is not irreducible if they are far apart.
Dictionary

- 3-manifold M: a topological space that locally looks like \mathbb{R}^3 (assume connected, compact and orientable);
- Surface S: 2-manifold (with or without boundary);
- S (properly) embedded in M: is a subset of M, homeomorphic to S, whose boundary is contained in the boundary of M.
- Irreducible M: every embedded 2-sphere bounds a 3-ball.
- **Essential** surface S in M: is a (properly) embedded surface such that:

 a) $\pi_1(S) \to \pi_1(M)$ is injective;

 b) S is not a sphere;

 c) S is not boundary parallel.
Essential Surface S in M: is a (properly) embedded surface such that:

- $\pi_1(S) \rightarrow \pi_1(M)$ is injective;
- S is not a sphere;
- S is not boundary parallel.
Motivation

Essential surfaces are important because

- they encode topological information;
- they are ubiquitous.
Motivation

Essential surfaces are important because
- they encode topological information;
- they are ubiquitous.

Theorem (Stalling, 1971)

Every compact irreducible 3-manifold with non-empty boundary contains an essential surface.
Motivation

Essential surfaces are important because
- they encode topological information;
- they are ubiquitous.

Theorem (Stalling, 1971)

Every compact irreducible 3-manifold with non-empty boundary contains an essential surface.

Theorem (Agol, 2012)

Virtual Haken Conjecture: Every compact, irreducible 3-manifold with infinite fundamental group is finitely covered by a 3-manifold containing an essential surface.
Motivation

Essential surfaces are important because
- they encode topological information;
- they are ubiquitous.

Theorem (Stalling, 1971)

Every compact irreducible 3-manifold with non-empty boundary contains an essential surface.

Theorem (Agol, 2012)

Virtual Haken Conjecture: Every compact, irreducible 3-manifold with infinite fundamental group is finitely covered by a 3-manifold containing an essential surface.

Haken Manifold: a compact, irreducible 3-manifold containing an essential surface.
Motivation

Haken Manifold: a compact, irreducible 3-manifold containing an essential surface.

Theorem (Waldhausen, 1976)

Suppose M is closed (empty boundary) and Haken. If M_1 is an irreducible 3-manifold such that $\pi_1(M) \cong \pi_1(M_1)$, then $M \cong M_1$.

Theorem (Thurston, 1986)

Hyperbolization Theorem: If M is a Haken manifold with torus boundary, then the interior of M admits a complete hyperbolic structure of finite volume.
Motivation

Haken Manifold: a compact, irreducible 3-manifold containing an essential surface.

Theorem (Waldhausen, 1976)

Suppose M is closed (empty boundary) and Haken. If M_1 is an irreducible 3-manifold such that $\pi_1(M) \cong \pi_1(M_1)$, then $M \cong M_1$.

Theorem (Thurston, 1986)

Hyperbolization Theorem: If M is a Haken manifold with torus boundary, then the interior of M admits a complete hyperbolic structure of finite volume.
Stalling’s Construction of Essential Surfaces

How can we construct essential surfaces?

Stalling’s Construction:

An action of $\pi_1(M)$ on a tree T without inversions (no edge is flipped)

(ii) non-trivial (no vertex globally fixed) \rightarrow A (non-canonical) essential surface

By (i) the quotient $G := T/\pi_1(M)$ is a graph. There is a map $f: M \rightarrow G$, where, for any $x \in G \setminus G(0)$, $f^{-1}(x)$ is a collection of disjoint surfaces properly embedded in M.

By (ii), $f^{-1}(x) \neq \emptyset$.

Simplify surfaces to an essential one.
How can we construct essential surfaces?

Stalling’s Construction:

An action of $\pi_1(M)$ on a tree T

(i) without inversions (no edge is flipped)
(ii) non-trivial (no vertex globally fixed)

\rightarrow A (non-canonical) essential surface
Stallings Construction of Essential Surfaces

How can we construct essential surfaces?

Stallings Construction:

An action of $\pi_1(M)$ on a tree T

(i) without inversions (no edge is flipped) \[\rightarrow\] A (non-canonical) essential surface

(ii) non-trivial (no vertex globally fixed)

- By (i) the quotient $G := T/\pi_1(M)$ is a graph.

- By (ii), $f^{-1}(x) \neq \emptyset$. Simplify surfaces to an essential one.
How can we construct essential surfaces?

Stallings Construction:

An action of $\pi_1(M)$ on a tree T

(i) without inversions (no edge is flipped) → A (non-canonical) essential surface

(ii) non-trivial (no vertex globally fixed)

- By (i) the quotient $G := T/\pi_1(M)$ is a graph.
- There is a map

$$f : M \to G,$$

where, for any $x \in G \setminus G^{(0)}$, $f^{-1}(x)$ is a collection of disjoint surfaces properly embedded in M.
Stalling’s Construction of Essential Surfaces

How can we construct essential surfaces?

Stalling’s Construction:

An action of $\pi_1(M)$ on a tree T

(i) without inversions (no edge is flipped) \rightarrow A (non-canonical) essential surface

(ii) non-trivial (no vertex globally fixed)

By (i) the quotient $G := T/\pi_1(M)$ is a graph.

There is a map

$$f : M \rightarrow G,$$

where, for any $x \in G \setminus G^{(0)}$, $f^{-1}(x)$ is a collection of disjoint surfaces properly embedded in M.

By (ii), $f^{-1}(x) \neq \emptyset$.

Simplify surfaces to an essential one.
Stallings’s Construction of Essential Surfaces

How can we construct essential surfaces?

Stallings’s Construction:

An action of $\pi_1(M)$ on a tree T

(i) without inversions (no edge is flipped) \rightarrow A (non-canonical) essential surface

(ii) non-trivial (no vertex globally fixed)

- By (i) the quotient $\mathcal{G} \coloneqq T/\pi_1(M)$ is a graph.
- There is a map

$$f : M \to \mathcal{G},$$

where, for any $x \in \mathcal{G} \setminus \mathcal{G}^{(0)}$, $f^{-1}(x)$ is a collection of disjoint surfaces properly embedded in M.

- By (ii), $f^{-1}(x) \neq \emptyset$.
- Simplify surfaces to an essential one.
Work by Tits, Bass and Serre (1980), and Culler and Shalen (2002):

Algebraic varieties \mathcal{X} and $\bar{\mathcal{X}}$
Work by Tits, Bass and Serre (1980), and Culler and Shalen (2002):

Algebraic varieties \mathcal{R} and \mathcal{X}

\downarrow

Ideal point P of $X \subset \mathcal{X}$
Work by Tits, Bass and Serre (1980), and Culler and Shalen (2002):

Algebraic varieties \mathcal{R} and \mathcal{X}

\downarrow

Ideal point P of $X \subset \mathcal{X}$

\downarrow

Valuation ν_P
Work by Tits, Bass and Serre (1980), and Culler and Shalen (2002):

Algebraic varieties \mathcal{R} and \mathcal{X}

$$\downarrow$$

Ideal point P of $X \subset \mathcal{X}$

$$\downarrow$$

Valuation ν_P

$$\downarrow$$

Simplicial tree T with an action of $\pi_1(M)$
Work by Tits, Bass and Serre (1980), and Culler and Shalen (2002):

Algebraic varieties \mathcal{R} and \mathcal{X}

\downarrow

Ideal point P of $X \subset \mathcal{X}$

\downarrow

Valuation v_P

\downarrow

Simplicial tree T with an action of $\pi_1(M)$

\downarrow

Essential surface
Henceforth: M is a compact, irreducible, orientable 3-manifold whose boundary consists of a single torus, and hyperbolic.
Henceforth: \(M \) is a compact, irreducible, orientable 3-manifold whose boundary consists of a single torus, and hyperbolic.

The **representation variety** \(R \) is the set of homomorphisms:

\[
R := \{ \rho : \pi_1(M) \to SL_2(\mathbb{C}) \}.
\]
Henceforth: \(M \) is a compact, irreducible, orientable 3-manifold whose boundary consists of a single torus, and hyperbolic.

The **representation variety** \(\mathcal{R} \) is the set of homomorphisms:

\[
\mathcal{R} := \{ \rho : \pi_1(M) \to SL_2(\mathbb{C}) \}.
\]

\(\mathcal{R} \) is a complex variety (\(\pi_1(M) \) is finitely generated).

\(\mathcal{R} \) is not irreducible, instead it has many components of different dimensions.
Henceforth: M is a compact, irreducible, orientable 3-manifold whose boundary consists of a single torus, and hyperbolic.

The representation variety \mathcal{R} is the set of homomorphisms:

$$\mathcal{R} := \{ \rho : \pi_1(M) \to SL_2(\mathbb{C}) \}.$$

\mathcal{R} is a complex variety ($\pi_1(M)$ is finitely generated).

\mathcal{R} is not irreducible, instead it has many components of different dimensions.

The character variety \mathcal{X} is the categorical quotient of \mathcal{R} by $SL_2(\mathbb{C})$ under conjugation:

$$\mathcal{X} := \mathcal{R} // SL_2(\mathbb{C}).$$

Categorical quotient: a point of \mathcal{X} is the closure of an $SL_2(\mathbb{C})$-orbits of a point in \mathcal{R}.

For future reference, let $t : \mathcal{R} \to \mathcal{X}$ be the quotient map.
Ideal Points

Hyperbolicity is a key component in many theorems about \mathcal{X}.

Fact: \mathcal{X} always contains an irreducible curve, that is a sub-variety of complex dimension 1.
Ideal Points

Hyperbolicity is a key component in many theorems about \mathcal{X}.

Fact: \mathcal{X} always contains an irreducible curve, that is a sub-variety of complex dimension 1.

Let X be one such irreducible curve.

By first resolving singularities, and then projectivizing, there is a smooth projective curve \tilde{X} (unique up to isomorphism) and a bi-rational map

$$\iota : \tilde{X} \to X,$$

whose inverse is defined on all of X.
Hyperbolicity is a key component in many theorems about \mathcal{X}.

Fact: \mathcal{X} always contains an irreducible curve, that is a sub-variety of complex dimension 1.

Let X be one such irreducible curve.

By first resolving singularities, and then projectivizing, there is a smooth projective curve \tilde{X} (unique up to isomorphism) and a bi-rational map

$$\iota : \tilde{X} \to X,$$

whose inverse is defined on all of X.

The set of **ideal points** of X is $\mathcal{I}(X) := \tilde{X} \setminus \iota^{-1}(X)$.
For each ideal point $P \in \mathcal{I}(X)$, there is natural valuation v_P associated to it.

Every rational map $f \in \mathbb{C}(X)$ uniquely extends to an element of $\mathbb{C}(\tilde{X})$, hence f is locally a meromorphic function.

Lemma

Let R be an irreducible component of \mathcal{R} such that $t(R) = X$. Then v_P extends uniquely (up to a scalar factor) to a valuation on the function field $\mathbb{C}(R)$.
Valuation

For each ideal point $P \in \mathcal{I}(X)$, there is natural valuation v_P associated to it.

Every rational map $f \in \mathbb{C}(X)$ uniquely extends to an element of $\mathbb{C}(\tilde{X})$, hence f is locally a meromorphic function.

We define $v_P : \mathbb{C}(X) \to \mathbb{Z}$,

$$v_P(f) := \begin{cases} -(\text{order of the pole of } f \text{ at } P) & \text{if } f(P) = \infty, \\ 0 & \text{if } f(P) \in \mathbb{C} \setminus \{0\}, \\ \text{order of the zero of } f \text{ at } P & \text{if } f(P) = 0. \end{cases}$$
Valuation

For each ideal point $P \in \mathcal{I}(X)$, there is natural valuation v_P associated to it.

Every rational map $f \in \mathbb{C}(X)$ uniquely extends to an element of $\mathbb{C}(\tilde{X})$, hence f is locally a meromorphic function.

We define $v_P : \mathbb{C}(X) \to \mathbb{Z},$

$$v_P(f) := \begin{cases} -(\text{order of the pole of } f \text{ at } P) & \text{if } f(P) = \infty, \\ 0 & \text{if } f(P) \in \mathbb{C} \setminus \{0\}, \\ \text{order of the zero of } f \text{ at } P & \text{if } f(P) = 0. \end{cases}$$

Lemma

Let R be an irreducible component of \mathcal{R} such that $t(R) = X$. Then v_P extends uniquely (up to a scalar factor) to a valuation on the function field $\mathbb{C}(R)$.
A construction due to Tits, Bass and Serre associates:

\[
\text{a valuation } v \text{ on a field } K \quad \rightarrow \quad \text{An action of } \text{SL}(2, K) \\
\text{on a tree } T
\]
From Valuation to Action on a Tree

A construction due to Tits, Bass and Serre associates:

\[\text{a valuation } \nu \text{ on a field } K \rightarrow \text{An action of } \text{SL}(2,K) \text{ on a tree } T \]

By applying this to the valuation \(\nu_P \) and the function field \(\mathbb{C}(R) \), we get an action of \(\text{SL}(2, \mathbb{C}(R)) \) on a tree \(T \).

The fact that \(P \) is an ideal point ensures that the action is non-trivial and without inversions.
From Valuation to Action on a Tree

A construction due to Tits, Bass and Serre associates:

\[
\text{a valuation } \nu \text{ on a field } K \rightarrow \text{An action of } \text{SL}(2, K) \text{ on a tree } T
\]

By applying this to the valuation \(\nu_P \) and the function field \(\mathbb{C}(R) \), we get an action of \(\text{SL}(2, \mathbb{C}(R)) \) on a tree \(T \).

The fact that \(P \) is an ideal point ensures that the action is non-trivial and without inversions.

Finally, we compose the action with the \textit{tautological representation}

\[
\pi_1(M) \rightarrow \text{SL}(2, \mathbb{C}(R))
\]

to get an action of \(\pi_1(M) \) on \(T \).
Culler-Shalen Detection

Stalling’s theory applies to construct a non-empty essential surface S in M. All surfaces arising in this way are said to be associated to the ideal point P. Essential surfaces associated to some ideal point of X are said to be detected by X.

Theorem (Culler - Shalen)

For $\gamma \in \pi_1(M)$, let $I_\gamma \in C(R)$ be the trace function:

$$I_\gamma : R \rightarrow C \rho \mapsto \text{tr}(\rho(\gamma))$$

Let S be an essential surface in M associated to an ideal point P:

1. If $v_P(I_\alpha) \geq 0$ for all $\alpha \in \pi_1(\partial M)$, then S may be chosen to have empty boundary;
2. Otherwise, there is a unique simple curve $\alpha_0 \in \pi_1(\partial M)$ with $v_P(I_{\alpha_0}) \geq 0$ and every component of ∂S is parallel to α_0.

This theorem divides ideal points in two classes, type 1 and type 2.
Culler-Shalen Detection

Stalling’s theory applies to construct a non-empty essential surface S in M. All surfaces arising in this way are said to be associated to the ideal point P. Essential surfaces associated to some ideal point of X are said to be detected by X.

Theorem (Culler - Shalen)

For $\gamma \in \pi_1(M)$, let $I_\gamma \in \mathbb{C}(\mathcal{R})$ be the trace function:

$$I_\gamma : \mathcal{R} \rightarrow \mathbb{C}$$

$$\rho \mapsto \text{tr}(\rho(\gamma)).$$

Let S be an essential surface in M associated to an ideal point P:

1) if $v_P(I_\alpha) \geq 0$ for all $\alpha \in \pi_1(\partial M)$, then S may be chosen to have empty boundary;

2) otherwise, there is a unique simple curve $\alpha_0 \in \pi_1(\partial M)$ with $v_P(I_{\alpha_0}) \geq 0$ and every component of ∂S is parallel to α.
Culler-Shalen Detection

Stalling’s theory applies to construct a non-empty essential surface S in M.

All surfaces arising in this way are said to be associated to the ideal point P. Essential surfaces associated to some ideal point of X are said to be detected by X.

Theorem (Culler - Shalen)

For $\gamma \in \pi_1(M)$, let $I_\gamma \in \mathbb{C}(\mathcal{R})$ be the trace function:

$$I_\gamma : \mathcal{R} \to \mathbb{C}$$

$$\rho \mapsto \text{tr}(\rho(\gamma)) .$$

Let S be an essential surface in M associated to an ideal point P:

1) if $v_P(I_\alpha) \geq 0$ for all $\alpha \in \pi_1(\partial M)$, then S may be chosen to have empty boundary;

2) otherwise, there is a unique simple curve $\alpha_0 \in \pi_1(\partial M)$ with $v_P(I_{\alpha_0}) \geq 0$ and every component of ∂S is parallel to α.

This theorem divides ideal points in two classes, type 1 and type 2.
The Questions

Two questions naturally arise from this result.

Question (1):
Is every closed essential surface in M detected by an ideal point of a curve in X?

Question (2):
Suppose α is a boundary component of an essential surface S. Is there an essential surface S' with boundary α detected by a curve in X?

Question (2): negative answer (Chesebro and Tillmann).

Question (1): negative answer (C., Katerba and Tillmann).
Two questions naturally arise from this result.

Question (1)

1. *Is every closed essential surface in \mathcal{M} detected by an ideal point of a curve in \mathcal{X}?*
The Questions

Two questions naturally arise from this result.

Question (1)

1. *Is every closed essential surface in M detected by an ideal point of a curve in \mathcal{X}?*

Question (2)

2. *Suppose α is a boundary component of an essential surface S. Is there an essential surface S' with boundary α detected by a curve in \mathcal{X}?*

Question (2): negative answer (Chesebro and Tillmann).

Question (1): negative answer (C., Katerba and Tillmann).
The Questions

Two questions naturally arise from this result.

Question (1)

1. *Is every closed essential surface in M detected by an ideal point of a curve in \mathcal{X}?*

Question (2)

2. *Suppose α is a boundary component of an essential surface S. Is there an essential surface S' with boundary α detected by a curve in \mathcal{X}?*

Question (2): negative answer (Chesebro and Tillmann).
The Questions

Two questions naturally arise from this result.

Question (1)

1. *Is every closed essential surface in M detected by an ideal point of a curve in \mathcal{X}?*

Question (2)

2. *Suppose α is a boundary component of an essential surface S. Is there an essential surface S' with boundary α detected by a curve in \mathcal{X}?*

Question (2): negative answer (Chesebro and Tillmann).
Question (1): negative answer (C., Katerba and Tillmann).
Strategy of the Proof

The strategy in our proof involved the following steps:

- **Finding a suitable candidate**: the census of complement of knots.
Strategy of the Proof

The strategy in our proof involved the following steps:

- **Finding a suitable candidate:** the census of complement of knots.
 The complement of the knot 10_{153} (*KnotInfo database*).

\[\pi_1(M) = \langle a, b, c \mid a^{-2}bcab^2c^2, ac^{-1}b^2c^{-1}b^{-2}c \rangle. \]
Strategy of the Proof

The strategy in our proof involved the following steps:

- **Finding a suitable candidate:** the census of complement of knots. The complement of the knot 10_{153} (*KnotInfo database*).

 \[\pi_1(M) = \langle a, b, c \mid a^{-2}bca^{-1}b^{-2}c, a^{-1}b^2c^{-1}b^{-2}c \rangle. \]

- **Closed essential surface:** Haken normal surface theory. Roughly 3 closed essential surfaces inside M (*Regina software*).
Strategy of the Proof

The strategy in our proof involved the following steps:

- **Finding a suitable candidate:** the census of complement of knots. The complement of the knot 10_{153} (*KnotInfo database*).

 \[\pi_1(M) = \langle a, b, c \mid a^{-2}bca^2b, aca^{-1}b^2c^{-1}b^{-2}c \rangle. \]

- **Closed essential surface:** Haken normal surface theory. Roughly 3 closed essential surfaces inside M (*Regina software*).

- **Character variety:** write down explicit equations (*Mathematica*).
Strategy of the Proof

The strategy in our proof involved the following steps:

- **Finding a suitable candidate:** the census of complement of knots. The complement of the knot 10_{153} (KnotInfo database).

\[\pi_1(M) = \langle a, b, c \mid a^{-2}bca^2c^2, acb^{-1}b^{-1}c^{-1}b^{-2}c \rangle. \]

- **Closed essential surface:** Haken normal surface theory. Roughly 3 closed essential surfaces inside \(M \) (Regina software).

- **Character variety:** write down explicit equations (Mathematica).

- **Ideal points:** show that none of them are of type 1. We appealed to:

Theorem (Chesebro - Katerba, 2016)

Let \(\text{Tr}_Q \) be \(\mathbb{Q} \)-algebra generated by all the trace functions \(I_\gamma \) on \(C[\mathfrak{x}] \). Then \(\text{Tr}_Q \) is naturally a \(\mathbb{Q}[I_\gamma] \)-module. Furthermore, if for some \(\alpha \in \pi_1(\partial M) \), \(\text{Tr}_Q \) is finitely generated and free as a \(\mathbb{Q}[I_\alpha] \)-module, then \(\mathfrak{x} \) does not detect a closed essential surface.

These computations were carried on using Macauly2.
Thank you very much for your attention!