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Abstract

Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products,

biofouling and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. The

recalcitrance of biofilms to typical antibiotic and antimicrobial treatments is one focus of current investigations. Neither reaction-

diffusion limitation nor heterogeneities in growth-rate explain the observed tolerance. Another hypothesis is that specialized

‘persister’ cells, which are extremely tolerant of antimicrobials, are the source of resistance.

In this investigation, we describe the formation of ‘persister’ cells which neither grow nor die in the presence of antibiotics. We

propose that these cells are of a different phenotype whose expression is regulated by the growth rate and the antibiotic

concentration. Based on several experiments describing the dynamics of persister cells, we introduce a mathematical model that is

used to describes the effect of a periodic dosing regiment. Results from our analysis indicate that the relative dose/withdrawal times

are important in determining the effectiveness of such a treatment. A reduced model is also introduced and the similar behavior is

demonstrated analytically.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been estimated that 99% of all bacteria live in
structured communities termed biofilms (Ashby et al.,
1994). Recently the US National Institutes of Health
announced that, ‘‘Biofilms are medically important,
accounting for over 80% of microbial infections in the
body’’. Understanding resistance mechanisms for bac-
terial biofilms is of paramount importance in treating
bacterial infections (Lewis, 2001; Allison and Gilbert,
1995; Elkins et al., 1999; Lappin-Scott and Costerton,
1995). There are several hypotheses concerning resis-
tance mechanisms which can be placed into three broad
categories: transport limitation, physiological tolerance
and phenotypic resistance.

Biofilm structure can prevent an applied antimicrobial
agent from reaching the entire bacterial population by
e front matter r 2005 Elsevier Ltd. All rights reserved.
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mechanisms such as a neutralizing reaction with
components of the biofilm (Xu et al., 1996; DeBeer et
al., 1994), synthesis of an antimicrobial degrading
enzyme (Giwercman et al., 1991; Bagge et al., 2004)
and adsorption of the antimicrobial by the exo-
polymeric substance (EPS) (Kumon et al., 1994). There
have been several mathematical models of biofilm
disinfection that include diffusion and various antimi-
crobial-degrading reactions (Sanderson and Stewart,
1997; Dodds et al., 2000; Cogan et al., 2005). These
studies indicate that if the reaction is catalytic and does
not degrade the neutralizing agent, bacteria deep within
the biofilm are not exposed to the antimicrobial agent.
Otherwise, even though lowered diffusion and degrading
reactions slow the penetration, the antimicrobial will
eventually penetrate the entire biofilm. Unless there are
other protective mechanisms at work, the bacteria
would eventually be eradicated.

Because most biocides and antibiotics are more
effective at killing respiring bacteria than non-respiring
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bacteria, disinfection will be spatially dependent. In
particular, there will be regions within the biofilm where
nutrient is not available. The bacteria in these regions
will exhibit decreased respiration leading to decreased
susceptibility to disinfection. This protective mechanism
is termed physiological resistance. Analysis of mathe-
matical models predict that bacteria on the surface of
the biofilm are killed before those deep within the
biofilm (Cogan et al., 2005; Roberts and Stewart, 2004).
Since the nutrient penetrates further as the bacteria are
killed, constant exposure to antimicrobials will even-
tually eradicate the bacteria. Since long-term exposure
to antimicrobials does not lead to complete eradication
of bacteria (Xu et al., 2000; Keren et al., 2004; Davies,
2003) other resistance mechanisms must be explored.

The focus of this paper is on the mechanism of
phenotypic resistance. Because transport limitation and
physiological tolerance cannot explain the typical bi-
phasic nature of survival data, tolerance due to
phenotypic variation is currently being studied (Sufya
et al., 2003; Lewis, 2001). It has been shown that
quorum sensing mechanisms, known to be linked with
biofilm formation (Davies et al., 1998), may also be
linked to antibiotic resistance (Mah et al., 2003;
Drenkard and Ausubel, 2002; Sufya et al., 2003).
Quorum sensing is involved in up-regulation of multi-
drug efflux pumps (Brooun et al., 2000), although this
may not play a role in the antibiotic-resistant phenotype
(Kievit et al., 2001). Variations in the maximum specific
growth rates may result in varying susceptibility of
bacteria (Sufya et al., 2003). A novel explanation of the
bi-phasic disinfection curves is the existence of ‘persister’
cells which are extremely tolerant of antibiotics. The
physiology of such cells is not well understood, although
their existence has been demonstrated (Desai et al.,
1998; Keren et al., 2004; Lewis, 2001). As yet there is no
consensus as to what phenotypic variations are primar-
ily responsible for biofilm tolerance (Lewis, 2001).

Here, we incorporate current biological observations
into a mathematical model of bacterial tolerance. This
model is used to explore optimal dosing strategies.
Although the model applies to spatially uniform
populations of bacteria, we view this as a first step
towards a more realistic model in a biofilm setting. We
first summarize the experiments that motivate the
model, then describe our assumptions and consequent
model. Several simulations used to estimate parameters
and explore dosing protocols will be described. Finally,
we introduce a simplified model which can be treated
analytically.
2. Planktonic experiments

Bacterial tolerance to antibiotics has been well
established although the specific mechanisms are still
being investigated. In Desai et al. (1998) the tolerance of
both planktonic and biofilm cultures of B. cepecia

bacteria to ciprofloxacin and ceftazidime was compared.
Bacterial populations were grown in rotary shakers
(planktonic) and polycarbonate membranes (biofilm).
At given times, samples of comparable bacterial number
were taken, diluted and exposed to the antibiotics for
1 h. By sampling at different times, resistance is linked to
the growth stage. That is, the untreated population
showed logistic growth with little or no lag stage,
followed by exponential growth and then a drop in the
growth rate due to nutrient limitation. Both planktonic
and biofilm bacteria showed drastic increase in tolerance
to both antibiotics during exponential growth. Thus, the
growth rate/phase of the culture plays an important role
in determining antibiotic susceptibility. In this study the
planktonic bacteria are always more susceptible to
biofilm bacteria at equivalent stages of growth although
this result has been contradicted (Spoering and Lewis,
2001). Because the biofilm cultures were disrupted and
suspended before treating them, the increased resistance
is not from any physical barrier. Rather, tolerance
results from physiological and phenotypic variations.

In another investigation similar experiments were
performed on planktonic populations of E. coli, P.

aeruginosa and S. aureus (Keren et al., 2004). The focus
of this investigation is on the generation of persisters,
cells which neither grow nor die in the presence of
antibiotics. Bacteria were cultured in a shaker overnight.
At designated times 1 ml of cells were treated with
antibiotics for 3 h and surviving bacteria were enumer-
ated. The time-dependent killing of exponential phase
bacteria in the exponential phase was determined by
incubating a culture and then exposing the cells to
antibiotics. The population was then enumerated at
specified times. The ratio between the surviving popula-
tion and the initial population gave a measure of the
effectiveness of the antibiotic. Survival curves show that
within 0.5–1 h more than 99% of the cells were killed.
Continued exposure had no significant effect on the
surviving population indicating the existence of ‘persis-
ter cells’.

The investigators then show that the persisters cells
are not mutants by re-suspending the bacteria and
culturing them with aeration for 16–24 h. The survival
curves are the same for all four replicates. Next the
growth-state dependence of persisters is determined by
challenging samples of a growing culture at designated
times for 3 h. The results indicate that the level of
persister formation was constant during the lag and
early exponential phases. During the mid-exponential
phase the number of persisters increased abruptly.
Results from these experiments are shown in Fig. 1.

In both studies antibiotics with different targets are
used, a b-lactam and a fluoroquinolone. This is
important, because fluoroquinolones are known to be



ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10
Growth−stage Dependence, Experimental

Time (hours)

Lo
g 

C
F

U
/m

l

Cell count before challenge
Ampicillin
Oflaxacin

Fig. 1. Growth-stage dependence of persister formation. The solid

curve shows the time course of an unchallenged population of bacteria.

At designated times samples were taken and enumerated after 3 h

exposure to ampicillin (triangles) or oflaxacin (diamonds). The data for

the broken lines are not time-courses but indicate the dependence of

persister expression on the growth-stage. Data courtesy of K. Lewis.
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effective against non-growing cells, indicating a more
complicated resistance mechanism than physiological
resistance.

In the following sections we describe our mathema-
tical model of the dynamics of the susceptible and
persister bacterial cells with one growth limiting
substrate. In the absence of antibiotic, the susceptible
bacteria consume substrate and reproduce. When
antibiotic is added, a fraction of the susceptible cells
are killed while another fraction convert to persister
cells. Persister cells are not effected by the antibiotic, nor
do they grow. Instead, if there is no antibiotic, persister
cells revert to susceptible cells at a fixed rate.
3. Model assumptions and description

We denote bacterial phenotypes as Bs and Bp for
susceptible and persister density, respectively. We
assume that there is one growth-limiting substrate, S,
and one antibiotic, denoted by A. The population of
susceptible bacteria changes due to growth, death due to
antibiotic action, loss due to transition to persister cells
and gain as the persistent cells revert back to susceptible
cells. Thus, the equation governing the dynamics of the
susceptible population is given qualitatively as

dBs

dt
¼ gðBs;SÞ|fflfflfflffl{zfflfflfflffl}

Growth

� dðBs;S;AÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Disinfection

� lðBs;S;AÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Loss

þ rðBp;S;AÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Reversion

. ð1Þ
Growth is described by Monod kinetics with max-
imum specific growth rate, Monod coefficient and yield
denoted by mmax and Ks and Y, respectively. Thus the
growth term is

gðBs;SÞ ¼
mmax

Y

S

Ks þ S
Bs.

It has been shown experimentally that inactive or
slowly growing bacteria are more tolerant to antibiotic
exposure (Gilbert et al., 2002). This observation has led
to several models of disinfection which explicitly address
this mechanism by linking the disinfection rate to the
growth rate of the bacteria (Roberts and Stewart, 2004;
Cogan et al., 2005). These studies indicate that
physiological properties of bacteria play an important
role in conferring tolerance. Moreover, disinfection
depends on the type of antibiotic used since fluoroqui-
nolones are known to be partially effective in killing
non-growing bacteria (Lewis, 2001). Therefore, if the
antibiotic is a b-lactam then the disinfection rate is
assumed to be proportional to the growth rate. If the
antibiotic is a fluoroquinolone we allow for disinfection
in the absence of growth, although at a reduced rate. We
assume that the disinfection term in Eq. (1) is

dðBs;S;AÞ ¼ kdðA; tÞmmax

S þ a
Ks þ S

Bs,

where a is zero for b-lactam and non-zero for
fluoroquinolone. The function kdðA; tÞ depends on the
antibiotic concentration. In particular, kd ¼ 0 if A ¼ 0
and is nonzero otherwise. Since the dose strategies are
time dependent, the disinfection rates also depend on
time.

Although the mechanism that induces persister
formation is not known, it is linked to the growth stage
of the bacteria. One possible mechanism that could
account for the abrupt change in the rate of persister
formation is the presence of auto-regulatory signal. It is
well known that expression of many genes associated
with biofilm formation are regulated by such signals and
can cause changes in the behavior of the bacteria
(Davies et al., 1998). Here we assume that the loss of
susceptible cells to the persister population occurs at a
rate that depends on both the growth rate and the
antibiotic concentration. Mathematically we have,

lðBs;S;AÞ ¼ klðA; tÞmmax

S

Ks þ S
Bs. (2)

This incorporates the dependence of the persister
formation rate on the growth-stage. In particular, when
the population is in the stationary phase there is
essentially no persister formation. During the exponen-
tial growth stage there is a relatively high rate of
persister formation. Since the transition from suscep-
tible to persister is assumed to be caused by exposure to
the antibiotic, kl is also time dependent.



ARTICLE IN PRESS
N.G. Cogan / Journal of Theoretical Biology 238 (2006) 694–703 697
We assume that persister cells only revert to
susceptible cells if there is no applied antibiotic. This
assumption is also motivated by the experiments in
Lewis (2001) where susceptibility is recovered after
several hours of incubation without antibiotic present
while there is essentially no change in the population
for continuous exposure. Mathematically we have
rðBp;S;AÞ ¼ kgðA; tÞBp, where kg is zero if there is
antibiotic present and non-zero otherwise.

Putting these together gives the equation governing
the dynamics of the susceptible population as

dBs

dt
¼

mmax

Y

S

Ks þ S
Bs � kd ðA; tÞmmax

S þ a
Ks þ S

Bs

� klðA; tÞmmax

S

Ks þ S
Bs þ kgðA; tÞBp. ð3Þ

Persister cells are not killed by the antibiotic, instead
the population changes as cells convert to and from
susceptible cells,

dBp

dt
¼ klðA; tÞmmax

S

Ks þ S
Bs � kgðA; tÞBp. (4)

We assume that substrate is being consumed only by
the susceptible population so the equation governing the
substrate concentration is,

dS

dt
¼ �mmax

S

Ks þ S
Bs. (5)

Eqs. (3)–(5) describe the dynamics for suspended
populations of susceptible and persisting bacteria and
substrate. In the next section, we describe simulations
which yield results comparable to experimental results
shown in Keren et al. (2004). Then we show results from
a simulated dosing protocol entailing application of a
constant concentration of antibiotic for a specified
length of time, withdrawing the antibiotic and allowing
the population to regrow. The results depend dramati-
cally on the length of dose/withdrawal times. In
particular, for short withdrawal times there is a persister
population generated which is eliminated extremely
slowly. If the treatment is terminated before the persister
population is cleared, there is rapid regrowth of the
bacterial population. For long withdrawal times the
Table 1

Parameters used in the simulations

Parameter Symbol Unit

Maximum specific growth rate ms h�1

Yield coefficient Y

Monod coefficient Ks mg l

Maximum disinfection rate kd h�1

Non-growing disinfection a mg l

Rate of loss kl h�1

Rate of gain kg h�1
susceptible population is only transiently eliminated.
The persister cells, generated from the dosing step, are a
source for the susceptible population which reproduce.
There are intermediate withdrawal times where neither
of these cases occurs.

Following this section, we introduce a simplified
model which is amenable to analytic treatment. The
reduced model still retains the fundamental behavior of
successful treatment for intermediate dose/withdrawal
times.

3.1. Parameters

Table 1 lists the parameters and values. We have used
typical values for maximum growth rate, yield and
Monod coefficient. The four parameters which depend
on the antimicrobial agent, kd , a, kl and kg, were
estimated. We assume that the rates are linearly
proportional to A and we determine the constant of
proportionality.

The parameters regarding disinfection rate and the
rate of transformation from susceptible to persister cells
were chosen to fit the time-dependent kill curve for
constant exposure found in Keren et al. (2004) (see Fig.
2). In the experiment antibiotic was applied continu-
ously so kd and kl are constant in time. Since we assume
that there is no reversion from persistent to susceptible
whenever there is antibiotic applied the reversion rate,
kg, is zero. The values of kd and kl are chosen to match
the time-scale for the plateau region and also the
effectiveness of each antibiotic. Comparing the pre-
dicted survival curves with the data indicate that our
model is capturing both the gross qualitative trends as
well as the correct scales.

Once the parameters kd and kl have been fixed, we
simulate the growth-stage dependence of persister
formation. In the experiments, bacteria were disinfected
as a suspension. Periodic samples were taken from the
reactor and exposed to antibiotic and then enumerated.
This generates two curves, an untreated growth curve
and a treated growth curve. It should be noted that the
treated growth curve is not a time-series, but rather a
representation of the estimated persister population for
s Value Source

0.417 Roberts and Stewart (2004)

0.2 Roberts and Stewart (2004)
�1 0.2 Roberts and Stewart (2004)

40 Estimated
�1 0.07 Estimated

0.001 Estimated

0.05 Estimated
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Fig. 2. Survival curves for susceptible and persister cells along with the
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Fig. 3. Growth-stage dependence of persister formation for bacteria

challenged with a b-lactam (growth-rate dependent) antibiotic. The

squares represent the cell count before challenge and the triangles are

the cell count after the challenge. The solid curve corresponds to the

untreated population, so the disinfection parameters kd and kl are

zero. The dashed curve is generated by taking bacteria at indicated and

exposing them to a constant level of antibiotic (kd and kl nonzero) for

3 h and interpolating the data. We see an abrupt increase in the

number of surviving bacteria at approximately 5 h indicating an

increase in the number of persister type bacteria. Our results agree well

with the data in Keren et al. (2004). We also see that as the growth-rate

goes to zero, because of nutrient depletion, the entire population

becomes tolerant.
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meters kd and kl are zero. The dashed curve is generated by taking

bacteria at indicated and exposing them to a constant level of

antibiotic (kd and kl nonzero) for 3 h and interpolating the data.

Again, we see an abrupt increase in the number of surviving bacteria at

approximately 5 h. Our results agree well with the data in Keren et al.

(2004). Because the antibiotic is effective against non-growing cells, we

do not see saturation to the untreated cell count as in Fig. 3. Instead,

the cell count saturates to a lower level.
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various stages of growth. In our simulations, we began
with initial conditions corresponding to 1� 107 suscep-
tible cells, zero persister cells and substrate concentra-
tion of twice Ks. In these simulations the antibiotic is
either never applied (to generate an untreated growth
curve) or applied continuously to bacteria at particular
growth stages. Thus the parameters are not time
dependent, rather there are separate experiments being
performed, one with no antibiotic being applied and
those where antibiotic is being applied continuously to
bacteria in fixed stages of growth. The untreated growth
curve is determined by solving Eqs. (2)–(4) using the
package ODE45 in MATLAB with kd , kg and kl zero.
Once the untreated simulation is completed, we use
values of Bs, Bp and S at specified times, and simulate
the effect of constant exposure to antibiotic for 3 h. Our
simulation results for both b-lactam and fluoroquino-
lone antibiotics are shown in Figs. 3 and 4.

Finally, we assume that persister cells lose their
persister phenotype after several generations which
yields an estimate for kg. The results shown below do
not depend qualitatively on the estimate for kg, rather it
is only necessary that persisters are capable of reverting
back to susceptible.

3.2. Simulated dosing experiment—ODE

In this section we describe results from a simulated
dosing experiment motivated by comments in Lewis
(2001).The author describes a possible treatment that
requires applying an antibiotic for a period of time,
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killing all susceptible bacteria while generating small
population of persister cells. Withdrawing the antibiotic
allows the persister cells to grow and revert back to
susceptible cells. At this point a second application will
remove virtually all of the bacteria.

We begin our simulations with a population of
susceptible cells which are exposed to nutrient and an
antibiotic for a fixed length of time, denoted Td . The
nutrient is initially twice Ks. The susceptible cells are
quickly eliminated and a small population of persister
cells is produced. The antibiotic is removed allowing the
cells to grow for a fixed length of time, Tw. Persister cells
revert to susceptible cells, which then consume nutrient
and reproduce. This completes one dose/withdrawal
period. After one dose/withdrawal period, fresh nutrient
is added and the cycle is repeated. Results from
numerical experiments, with a dose period of 10 h and
varying withdrawal period are shown in Figs. 5–7. If the
bacterial population is not eliminated within approxi-
mately 30 days the treatment is deemed ineffective and
the simulation is stopped.

For short withdrawal periods the treatment fails to
eliminate the persister population within the alloted time
period (see Fig. 5). If the treatment is discontinued, the
population quickly regrows. For large withdrawal
periods the susceptible population is not eliminated.
Instead, the susceptible population responds to the
treatment quickly while generating a persister popula-
tion. The persisters are a source of susceptible cells once
the antibiotic is withdrawn. This results in an ineffective
treatment (see Fig. 6). There are intermediate dose/
withdrawal pairs for which the treatment is effective in
clearing both the susceptible and persister population
(see Fig. 7). This indicates that periodic dosing may be
effective, but the dosing regiment must be specific to the
bacterial kinetics. The withdrawal period must be long
enough to allow the persister cells to revert to
susceptible cells but not long enough for the susceptible
cells to reach the exponential growth stage.

To find the optimal withdrawal length, we measure
the change in population as a function of this length.
The envelope of the survival curves is the maximum of
the respective populations during each cycle (see Fig. 8).
The slope of the envelope on a logarithmic scale gives
the exponential rate of change in the population. For
successful treatments, the maximum rate is negative. In
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Fig. 9, we show the maximum slope of the logarithm of
the envelope as a function of the withdrawal time.
Minimizing this curve gives the optimal strategy for the
parameters given in Table 1 and Td ¼10 h. In this care
the optimal value for Tw is approximately 7.5 h.

Results from the simulations predict that there is an
optimal dosing strategy. However, because the differ-
ential equations are nonlinear and non-autonomous, it
is difficult to proceed with any analytic treatment. In the
following section, we propose a simplified model by
assuming that the nutrient level is constant. This reduces
the model from a system of three coupled nonlinear,
non-autonomous equations to a system of two linear,
non-autonomous equations. These equations can be
solved analytically and the dynamics of the populations
of susceptible and persistent bacteria reduce to a two-
dimensional map. The success of the dosing strategy is
determined by the eigenvalues of the map.
4. Simplified model

Assuming that the nutrient concentration is constant
in time gives,

dBs

dt
¼ k̂sBs � k̂dðA; tÞBs

� k̂lðA; tÞBs þ k̂gðA; tÞBp, ð6Þ

dBp

dt
¼ k̂lðA; tÞBs � k̂gðA; tÞBp. (7)

We further assume that the antibiotic level switches
instantaneously from application to withdrawal. Under
these assumptions, k̂s is a positive constant while k̂d and
k̂l are zero if there is no antibiotic and non-zero
otherwise. The rate of reversion from persister to
susceptible described by k̂g is non-zero only if the
antibiotic is not applied. The solution to Eqs. (6) and (7)
with initial conditions Bsð0Þ and Bpð0Þ are

BsðtÞ ¼

Bsð0Þe
ðk̂r�k̂d�k̂l Þt AX0;

ðBsð0Þ þ Bpð0ÞÞk̂g þ Bsð0Þk̂r

k̂g þ k̂r

ek̂rt

�
Bpð0Þk̂g

k̂g þ k̂r

e�k̂gt A ¼ 0;

8>>>>>>><
>>>>>>>:

and

BpðtÞ ¼
Bpð0Þ þ k̂lBsð0Þ

eðk̂r�k̂d�k̂l Þt � 1

k̂r � k̂d � k̂l

AX0;

Bpð0Þe
�k̂gt A ¼ 0:

8>><
>>:

(8)

We begin with an initial population of bacteria which
are all susceptible (i.e. Bsð0Þ ¼ Bs;Bpð0Þ ¼ 0) and apply
an antibiotic for a length of time Td . The population of
each phenotype is,

BsðTdÞ ¼ Bsð0Þe
ðk̂r�k̂d�k̂l ÞTd , (9)

BpðTd Þ ¼ k̂lBsð0Þ
eðk̂r�k̂d�k̂l ÞTd � 1

k̂r � k̂d � k̂l

. (10)

Using these values as initial conditions for the
dynamics with A ¼ 0 for a length of time Tw, we obtain
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Fig. 10. The curve in the Td ;Tw-plane for which the eigenvalue is

equal to one. Above this curve, the eigenvalue is less than one, while

below this curve the eigenvalue is greater than one.
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Fig. 11. The largest eigenvalue for fixed Td ¼ 2 as a function of the

withdrawal time. For withdrawal times less than approximately 9 h,

the eigenvalue is less than one, indicating a successful treatment. The

minimum value occurs at approximately 7.5 h, which agrees well with

results from Section 3.2.
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the new populations

BsðTwÞ ¼
ðBsðTdÞ þ BpðTd ÞÞk̂g þ BsðTdÞk̂r

k̂g þ k̂r

ek̂rTw

�
BpðTd Þk̂g

k̂g þ k̂r

e�k̂gTw , ð11Þ

BpðTwÞ ¼ BpðTdÞe
�k̂gTw . (12)

We define M as the map taking ðBsð0Þ;Bpð0ÞÞ to
ðBsðTwÞ;BpðTwÞÞ. This map can be written as a matrix
with entries

M1;1

¼
ðk̂

2

r þ k̂gk̂r � k̂rk̂d � k̂gk̂l � k̂gk̂d Þe
k̂rTwþðk̂r�k̂d�k̂l ÞTd � k̂gk̂le

�k̂1Tw

ðk̂g þ k̂rÞðk̂r � k̂d � k̂lÞ
,

ð13Þ

M1;2 ¼
k̂g

k̂g þ k̂r

ðek̂rTw � e�k̂gTw Þ, (14)

M2;1 ¼
k̂l

k̂r � k̂d � k̂l

ðeðk̂r�k̂d�k̂l ÞTd � 1Þe�k̂gTw , (15)

M2;2 ¼ e�k̂gTw . (16)

The success or failure of the dosing strategy in this
simplified situation is determined by the eigenvalues of
the map M. If the magnitude of each eigenvalues is less
than one, the repeated dose/withdrawal will eventually
eradicate both populations. Otherwise there will be
growth of one or both of the phenotypes, indicating an
unsuccessful outcome.

We find that one of the eigenvalues is less than one for
all nonzero dose/withdrawal times. The curve in the
ðTd ;TwÞ-axis for which the second eigenvalue is equal to
one is shown in Fig. 10. Above this curve the eigenvalue
is less than one, while below this curve the eigenvalue is
greater than one. We also show the value of the
eigenvalue for fixed dose time and varying withdrawal
times in Fig. 11. This curve agrees qualitatively with the
simulations shown in Section 3.2. In particular, we see
that for short withdrawal times, we have successful
treatment. The rate that the populations decrease to
zero has a unique minimum. For long withdrawal times
the eigenvalue is greater than one, indicating an
unsuccessful treatment. Both the withdrawal time
which precludes successful treatment and the optimal
withdrawal time are similar to those obtained in
Section 3.2.

We also find that for withdrawal time larger than 9.3,
there is no successful treatment. Although the results are
shown only for Td ¼ 025 h, this conclusion is true for
much larger (i.e. Td440 h). The withdrawal time along
with unbounded growth produces too many bacteria for
the treatment to be effective.
5. Discussion

We have presented a mathematical model of bacterial
tolerance based experimentally observed ‘persister cells’.
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These cells are a dormant phenotype that is expressed at
a rate that depends on the population growth rate and
the antibiotic concentration. Parameters of the model
have been chosen to yield results comparable to
experiments.

We use the model to test the hypothesis that
alternating dose/withdrawal of the antibiotic results in
elimination of all bacteria. The optimal strategy is also
determined. Results of this analysis do not depend on
the mechanism which induces the expression of the
persistent phenotype. It is only necessary that the
formation of persisters is related to the growth stage.
This does not address the more difficult question
concerning the regulation of persister expression. It
seems reasonable to suppose that rather than linking the
rate of formation of persisters to the growth rate there is
a quorum sensing signal. Thus there may be a switch
analogous to that which governs the expression of the
biofilm phenotype.

Because we assume that the rate of persister forma-
tion is proportional to the growth rate, we find that
persister cells are formed throughout the growth-cycle.
This is not reflected in experimental results (Dr. Kim
Lewis personal communication). Instead, it seems that
there is no persister formation until the mid to late
exponential phase. This may indicate that the expression
of the persister phenotype is regulated by an auto-
inductive signal.

The specific mechanism governing the reversion from
persister back to susceptible phenotype does not
qualitatively alter the results of the analysis. As long
as there is some reversion from persister back to
susceptible the persister cells will act as a source for
the regrowth of the bacterial population. This is a major
problem for bacterial biofilm infections, since persister
cells within the biofilm are also physically protected
from the immune system by the surrounding polymer
gel.

The dynamics of persister formation are clearly more
complicated in a biofilm setting. In a recent paper the
authors consider a model of persister formation within a
growing biofilm. Results from model simulations
suggest that persisters can accumulate within the biofilm
although the production of persisters near the surface of
the biofilm is outpaced by reproduction of susceptible
bacteria. If the rate of formation of persisters is instead
related to the antibiotic and the growth rate the question
is much more delicate since both the nutrient and the
antibiotic must diffuse through the biofilm. The
concentrations of antibiotic and nutrients depend on
reactions within the biofilm which can alter the
dynamics of persister formation. In conclusion, we have
shown that both persister and susceptible cells can be
eliminated from a suspended population by an alternat-
ing dose/withdrawal strategy. It remains to be deter-
mined whether the same strategy will be effective in a
biofilm setting where the transport of nutrient and
antibiotic is more complicated.
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