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Abstract

Modeling host/pathogen interactions provides insight into immune defects that allow bacteria to overwhelm the host,
mechanisms that allow vaccine strategies to be successful, and illusive interactions between immune components that
govern the immune response to a challenge. However, even simplified models require a fairly high dimensional parameter
space to be explored. Here we use global sensitivity analysis for parameters in a simple model for biofilm infections in
mice. The results indicate which parameters are insignificant and are ‘frozen’ to yield a reduced model. The reduced model
replicates the full model with high accuracy, using approximately half of the parameter space. We used the sensitivity to
investigate the results of the combined biological and mathematical experiments for osteomyelitis. We are able to identify
parts of the compartmentalized immune system that were responsible for each of the experimental outcomes. This model
is one example for a technique that can be used generally.
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1 Introduction

Incorporating biological observations into mathematical models often requires high dimensional parameter space, even if
the mathematical model is merely a caricature of the biological complexity. Typically there are three major approaches to
explore a biological question: experimentation, theoretical design, and computational analysis. In general, experimental
results inspire mathematical models, which are subsequently solved and analyzed. However, each step in any investigation
contributes a certain level of uncertainty in results and predictions due to approximations, assumptions, error, lack of
information, etc.

One biological issue that has gained recent notoriety for its impact on the medical community is Staphylococcus aureus (S.
aureus) which is presenting as MRSA (methicillin-resistant S. aureus) with more regularity. Staphylococcus aureus
infections and the subsequent immune responses have diverse and complex interactions. To understand this type of
infection, experiments are often very specific and require many parameter estimates in order to capture the behavior in a
mathematical model. However, many of these parameters cannot be identified either because of the cost of gathering data
or because of the difficulty in experimental design. For example, mice models are often used to study the immune
response’s reaction to S. aureus challenge, and gathering data requires the sacrifice of multiple hosts for each data point.
There are also various types of assays that can be used to characterize immune components which can lead to conflicting
data. This information gathered for mouse experiments and parameters do not necessarily give insights into human
parameters.

There are many models that describe the immune system’s response to different diseases and therapies. These models are
all built with different levels of complexity and detail. Detailed models either require a substantial number of variables and
assumptions, many of which cannot yet be completely characterized, or only focus on the major players for the specific
biological problem, ignoring/eliminating other subtle interactions (Bianca and Pennisi 2012; Chow et al. 2005; Gammack
et al. 2005; Marino and Kirschner 2004; Marino et al. 2004; Wigginton and Kirschner 2001). Many modelers choose to
handle the complexity of the immune system by taking a mechanistic approach combining parts of the immune response
into generalized compartments (Day et al. 2006; Herald 2010; Jarrett et al. 2014; Kumar et al. 2004; Reynolds et al.
2006). Additionally, for some diseases, incorporation of a time-delay is necessary to accurately describe the biology such
as the time needed for the regeneration or recruitment of cells (Buric et al. 2001; Culshaw and Ruan 2000; Perelson and
Nelson 1999) but can introduce much more complexity to a model.

A very useful tool to help understand and ultimately deal with uncertainty in a model’s results is sensitivity analysis (SA).
SA is used to identify parameters that have effects on the outputs of the system when they are varied. We discuss the
usefulness of this information in detail below, but SA is primarily used to identify parameters to reduce the parameter
space of a model as well as parameter targets for experimental exploration. This analysis is computational, which is far less
cumbersome from regular trial and error exploration methods. Previously, different types of SA have been used for biology
motivated mathematical puzzles, but they are mostly local and limited to first order interactions or regression methods
(Arino et al. 2008; Bailey and Duppenthaler 1980; Banks and Bortz 2005; Lee et al. 2013; Neilan et al. 2010).

Here we present a more recently developed form of global SA (Liu 2013). We present its results for a simple ordinary
differential equation (ODE) model previously created to understand the immune response to an S. aureus infection in
mice (Jarrett et al. 2014). We also provide an interpretation of the results of the global SA and the biological implications
that the outcomes suggest.

This paper is an example of a collaboration that links mathematical analysis directly with experimental results. This
coupling allowed us to focus on parameters of possible biological importance which could have been easily passed over.
Specifically, our focus was to use global SA to characterize parameters previously linked to biological experiments to
possibly simplify/reduce the model and better understand the dominant parameters for each experiment. Exploring the
sensitivity and uncertainty of parameters in a model is an exercise that requires both experimental and mathematical
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results. Without biological evidence, understanding the meaning of the sensitivity of parameters is impossible. Likewise,
without having a mechanism to identify parameters that are significant, or, on the other hand, unimportant, model design
and model reduction can only proceed with intuition.

2 Biological problem

Strains of resistant infectious bacteria are becoming more prevalent in medical facilities every year. These strains are
putting a costly burden on the health care system due to the fact that their resistance often requires the complete removal
of any surface harboring the bacteria when sanitation protocols fail including medical equipment/plumbing from the
facility or even the medical implants themselves from patients (Gould et al. 2012). The most prevalent nosocomial
infection for indwelling medical devices is MRSA (Brady et al. 2006).

Standard treatment protocols often fail at preventing and removing resistant infections (Shirtliff et al. 2001). MRSA is the
cause for infections of the skin, soft tissue, pneumonia, musculoskeletal infections, and also the resulting infections of
indwelling medical devices such as intravenous catheters and prosthetic implants. MRSA has many resistance mechanisms
including enzymes that degrade, deactivate, or change antibiotics.

Bacteria are able to attach to a surface and embed themselves in an extracellular hydrated slime matrix (derived from both
the microbes themselves and the host) to form what is called a biofilm. MRSA forms a protective biofilm structure, which
becomes a source of infection that resists clearance by the host immune response and antimicrobial agents (Shirtliff et al.
2002). The biofilm structure provides protection for the microbes from antibiotics in many ways, including reduced
antibiotic penetration, low metabolic rate, and specialized phenotypic expression (Gilbert et al. 1990; Proctor et al. 1998;
Stewart 2003; Stewart and Costerton 2001; Thien-Fah and O’Toole 2001). There is also evidence that the protective
biofilm increases the spread of phenotypes that result in drug resistance (Cogan 2006). Due to these resistance
mechanisms, biofilm infections cannot usually be eliminated using only antibiotic treatment. Additionally, only surgical
removal of the biofilm can eliminate the infection if a mature biofilm is formed. This in itself causes significant morbidity,
mortality, and complications for the patient (Prabhakara et al. 2011b). This biological problem has led to a massive
research effort focusing on not only MRSA but also biofilms in general. These efforts include, but are not limited to,
antibiotic dosing strategies, pretreatment of surgical implants with antimicrobial agents, immunomodulation therapies,
and vaccines. Studies focusing on immunomodulation therapies and vaccine development for MRSA are important due to
the antibiotic resistance and ability to form a biofilm. However, the nature of S. aureus presents major challenges to
current vaccine strategies (Harro et al. 2010).

The Shirtliff group at the University of Maryland has completed numerous experiments to characterize this type of
infection by identifying antigens associated with its biofilm as well as documenting the host immune response in mice.
These experiments consist of creating a S. aureus biofilm infection on a medical pin, which is then implanted in the tibia of
different mouse strains and treated with several types of immunomodulation therapies. At several time points, post
infection, various cytokine levels, amount of infection, and the morbidity of the infection were documented (Brady et al.
2011; Prabhakara et al. 2011a, b; Shirtliff et al. 2012).

Eight experiments were designed to compare different immune defects and vaccine strategies. Three strains of mice with
differing immune potentials were used and treated with several immunomodulation therapies representing different
immune-compromised states and a normal/healthy immune response. These mice strains have biased immune responses
where one type has a dominant pro-inflammatory response and another strain has a stronger anti-inflammatory response.
Inflammation, in the form of blood flow, and pro-inflammatory leukocytes move into areas of infection as the primary
component of the body to remove invading pathogens. However, if not specific or overly activated, host tissue damage can
result from uncontrolled inflammation, whereas the anti-inflammatory responses reduce inflammation with chemical
signaling and specialized cells (Delves and Roitt 2000a).
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The first of a series of experiments compared the immune responses of the different strains of mice, and they found that
the infection was less severe in the anti-inflammatory dominant strain versus the pro-inflammatory dominant strain
(experiments 1 and 2 below). They also compared the damage to the bone at the pin implant site of these mouse strains
caused by pro-inflammatory cells moving into the infected area. They observed significant damage to the pro-
inflammatory dominant mice, and very little damage to the anti-inflammatory dominant mice (Prabhakara et al. 2011a).

After these initial experiments they performed several more experiments to determine the effects of particular parts of
both the pro- and anti-inflammatory responses to elucidate whether the anti-inflammatory response is a protective
mechanism or if an over active pro-inflammatory response simply can exacerbate infections (experiments 3–6 below)
(Prabhakara et al. 2011b).

The Shirtliff group was also able to develop different vaccines for MRSA caused osteomyelitis in mice. Without
vaccination, the pro-inflammatory dominant mice would not have an anamnestic immune response to these antigens and
would not be able to prevent a biofilm matrix from forming. The first vaccine they created provided partial protection
against a S. aureus biofilm infection. The vaccine only expressed biofilm-specific antigens, so adjunctive antibiotic therapy
was required to clear planktonic populations of the bacteria. A later vaccine consisted of the original four-components of
the earlier vaccine with one additional antigen. The planktonic bacteria express the additional antigen in vivo during the
infection. The five-component vaccine provided complete protection and elimination of S. aureus populations in this
particular mouse model (experiments 7 and 8 below) (Brady et al. 2011; Shirtliff et al. 2012).

Specific and detailed data for these mouse experiments can be found in the papers mentioned above, but we have included
Table 1 for a brief description the mouse strains, their biological elements, and the basic results of the experiments.

These experiments and their results inspired a mathematical model to predict other experimental outcomes and possibly
elucidate targets for immunotherapy and other experiments which we briefly describe in the next section (Jarrett et al.
2014).
Table 1

Comparison of mouse strains: their biological elements, basic results of experiments, and experiment numbers used here
and citations

Mouse
strain

Biological elements Basic results Experiments

BALB/c Th2 and Treg (anti-
inflammatory)
dominant immune
response

Able to clear infection, but when treated with
antibodies against Treg cells the mice lose their
ability to overcome the infection

1, 4 (Prabhakara et al.
2011b)

C57BL/6 Th17 and Th1 (pro-
inflammatory)
dominant immune
response

Unable to clear infection unless treated with
antibodies that block both the Th17 and Th1
responses or with a vaccine

2, 5–8 (Brady et al. 2011;
Prabhakara et al. 2011b;
Shirtliff et al. 2012)

STAT6
KO

BALB/c mice with Th2
response removed

Unable to clear the infection 3 (Prabhakara et al.
2011b)
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KO
BALB/c

response removed 2011b)

3 Mathematical model

This model consists of four nonlinear ODEs represented by the following equations:

(1)
Three of the components represent parts of the immune system, and the fourth component represents the infection .
The immune system components are the pro-inflammatory response , anti-inflammatory response , and
inflammation/damage . This style of model has been developed previously, although in a more generic form (Reynolds
et al. 2006; Day et al. 2006). Specifically, previous models neglected the interaction between the bacterial dynamics and
the inflammation and focused on general outcomes (e.g. infection clearance). Whereas the components of this system have
been linked to the findings of the Shirtliff group pertaining to the immune response to this type of biofilm infection as well
as recent biological evidence.

The bacteria component  is treated as a growing population that benefits from inflammation with rate  and is
reduced by the pro-inflammatory response with rate . Logistic-type growth is used since nutrient that the bacteria
harvest from the body is not accounted for, where  is the growth rate. A source term representing the initial source of the
biofilm infection was incorporated to better represent the slowly decaying infection from the pin implant in the
experiments.

The pro-inflammatory response is the combined efforts of the Th1 and Th17 responses of mice described by the Shirtliff
group. This response depends on both inflammation and the bacteria with rate  and  respectively. However, this
recruitment is not exponential but has a maximal, active capacity that depends on the amount of the pro-inflammatory
response present. The pro-inflammatory response is down regulated by the anti-inflammatory response with rate , and
it decays at a rate . In addition, the natural decay rate decreases when bacteria are present in the system, agreeing with
recent biological evidence (Coxon et al. 1999).

In the model, the anti-inflammatory response represents the effort of the Treg cells and is recruited by the pro-
inflammatory response at rate . This is a simplification since the anti-inflammatory response is actually recruited by the
inflammation. The anti-inflammatory response should not be effective against the inflammation until macrophages (part
of the pro-inflammatory response) are activated, so this is a reasonable simplifying assumption. This separate activation is
the “reprogramming” of already recruited macrophages. The anti-inflammatory response is decreased by inflammation
caused by platelet blockage with rate  (Moura and Tjwa 2010), which is an interaction novel to this model. It also
decreases by its natural decay rate  again, it was assumed that the natural decay rate also depends on the magnitude
of the infection (Coxon et al. 1999).

The inflammation component  reflects the damage caused the pro-inflammatory response and bacteria as well as
increased blood flow bringing cells and platelets to the area. It is reduced by the anti-inflammatory response and natural

dP
dt
dA
dt
dI
dt

dB
dt

= ( I + B)(1 − P) − [ A + (1 − )] Pα1 ρ1 β1 μ1
B

KB

= P − [ I + (1 − )] Aα2 β2 μ2
B

KB

= P + B − ( A + )Iα3 ρ2 β3 μ3

= [g (1 − ) + I − P] B +B
KB

α4 β4 e−γt

(B)
(P) (A)

(I)

(B) α4
β4

g

α1 ρ1

β1
μ1

α2

β2
−μ2

(I)
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decay. The pro-inflammatory response and bacteria cause the inflammation to increase with rate  and  respectively.
The inflammation is reduced by the immune system’s anti-inflammatory response with rate  and by its natural decay
rate represented by . The coupling between the pathogen and damage had not been incorporated in previous models
and plays a key role in the model’s results.

We note that the Th2 response is represented in the combination of both pro-inflammatory and anti-inflammatory
components due to the fact that these cells recruit pro-inflammatory cells to attack the biofilm, and Th2 cells also produces
cytokines that down-regulate the pro-inflammatory Th1 and Th17 responses.

This simple model is capable of representing the qualitative results for all eight of the major experimental results gathered
by the Shirtliff lab, and it also includes a healthy state represented by an all-positive equilibrium for the immune response
components and the infection component equal to zero. This represents the basal level of the host immune response
(Delves and Roitt 2000b), not previously seen by simple, compartmental modeling efforts for the immune system
responding to infection. See Table 2 for a brief comparison of each of the experiments to the outcomes of the model
including steady-states, eigenvalues, and the biological references. For further details about this model and comparison to
the biological data and all experimental outcomes see (Jarrett et al. 2014).
Table 2

Summary of the model results compared to experimental evidence (Jarrett et al. 2014)

Experiment
description Model results

Corresponding
biological
results

1. BALB/c tibia
implanted with
S. aureus coated
pin

Clearance of infection and return to basal/healthy equilibrium. The stable
equilibrium (basal level) is  with
eigenvalues 

After 21 days,
41.67 % of mice
infected and after
49 days, 25 %
infected with
decreasing CFU
amounts; no
biofilm formation;
lack of neutrophil
infiltration to bone
(Prabhakara et al.
2011b)

2. C57BL/6 tibia
implanted with
S. aureus coated
pin

Infection persists and bacteria positive equilibrium is stable which has a
higher inflammation/damage value. The stable equilibrium is 

 with eigenvalues 

At all time points
100 % of mice
infected; definite
biofilm formation;
large numbers of
neutrophil
infiltration to bone
(Prabhakara et al.
2011b)

α3 ρ2
β3

μ3

( , , , ) ≈ (0.82, 0.20, 2.10, 0)P̄ Ā Ī B̄
λ ≈ −0.06, −0.17, −0.44, −0.95

( , , , ) ≈ (0.94, 0.22, 2.69, 0.54)P̄ Ā Ī B̄
λ ≈ −0.07 + 0.33i, −1.04 + 0.33i, −1.04 − 0.33i, −0.07 − 0.33i
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2011b)

3. STAT6 KO
BALB/c (no Th2

response) tibia
implanted with
S. aureus coated
pin

Infection persists and bacteria positive equilibrium is stable. However, it
has a lower inflammation/damage value. The stable equilibrium is 

 with eigenvalues 

After 21 days,
100 % of mice still

infected but with
CFU amounts
comparable to
BALB/c mice still
infected at 21 days
(Prabhakara et al.
2011b)

4. BALB/c tibia
implanted with
S. aureus coated
pin and treated
with Treg
antibodies
(anti-CD25)

Infection persists and bacteria positive equilibrium is stable. The stable
equilibrium is  with eigenvalues 

After 21 days,
infected mice
increased to
87.5 %
(Prabhakara et al.
2011b)

5. C57BL/6 tibia
implanted with
S. aureus coated
pin and treated
with Th17
antibodies
(anti-IL-6)

Infection persists and bacteria positive equilibrium is stable but with a
lower level of infection. The stable equilibrium is 

 with eigenvalues 

After 21 days,
infected mice
decreased slightly
to 85.7 %
(Prabhakara et al.
2011b)

6. C57BL/6 tibia
implanted with
S. aureus coated
pin and treated
with Th17 and
Th1 antibodies
(anti-IL-6, anti-
IL-12p40)

Small changes in the specific parameters for experiments 5 and 6 result in
either persistence of infection or clearance. The stable equilibrium
(healthy) is  with eigenvalues 

After 21 days,
infected mice
decreased to
62.5 %
(Prabhakara et al.
2011b)

7. C57BL/6 tibia
implanted with
S. aureus coated
pin and treated
with
quadrivalent

Infection persists and bacteria positive equilibrium is stable unless
antibiotic treatment is incorporated which gives stability to the
healthy/basal equilibrium. The stable equilibrium (without antibiotics) is 

 with eigenvalues 

After previous
vaccination,
14 days after
implantation of
infection 50 % of
mice remained

( , , , ) ≈ (0.91, 0.38, 1.56, 0.57)P̄ Ā Ī B̄
λ ≈ −0.08 + 0.39i, −0.64, −1.33, −0.08 − 0.39i

( , , , ) ≈ (0.96, 0.28, 3.03, 0.70)P̄ Ā Ī B̄
λ ≈ −0.06 + 0.36i, −1.16 + 0.43i, −1.16 − 0.43i, −0.06 − 0.36i

( , , , ) ≈ (0.84, 0.18, 2.17, 0.18)P̄ Ā Ī B̄
λ ≈ −0.09 + 0.18i, −0.62, −0.80, −0.09 − 0.18i

(( , , , ) ≈ (0.68, 0.16, 1.46, 0)P̄ Ā Ī B̄
λ ≈ −0.16, −0.19 + 0.08i, −0.72, −0.19 − 0.08i

( , , , ) ≈ (0.91, 0.15, 3.08, 0.07)P̄ Ā Ī B̄
λ ≈ −0.07 + 0.07i, −0.78, −1.25, −0.07 − 0.07i
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quadrivalent
vaccine and
antibiotics

mice remained
infected (Shirtliff
et al. 2012) and in
rabbits 66 %
remained infected

(Brady et al. 2011),
but combined with
antibiotics there
was a 99.9 %
reduction in
bacterial
population for
rabbits (Shirtliff et
al. 2012)

8. C57BL/6
tibia implanted
with S. aureus
coated pin and
treated with
pentavalent
vaccine

Clearance of infection and return to basal/healthy equilibrium. The stable
equilibrium is  with eigenvalues 

After 21 days, there
was 100 %
clearance in all
mice (Shirtliff et al.
2012)

4 Uncertainty and sensitivity analysis

Each stage of mathematical modeling introduces uncertainty that can be categorized into non-reducible and reducible
uncertainty. Non-reducible uncertainty stems from parameters and conditions for the system of equations being analyzed.
This type of uncertainty implies that the biological process has variability that affects the model predictions. Reducible
uncertainty stems from a lack of information about a particular aspect of the system. By collaborating with
experimentalists data can be gathered specific to reducing the uncertainty of parameters and the interaction of variables.

SA refers to a broad group of methods that ranks parameters by their effect on output variables, which has several roles to
play in investigations. One role is to describe the effects of both non-reducible and reducible uncertainty. A second role
that SA plays is in model reduction. Model results can depend heavily on particular parameters, but other parameters may
be essentially irrelevant to the overall results. Identifying and ‘freezing’ these parameters can reveal simpler models for the
same complex biological system.

Uncertainty and sensitivity are terms that are sometimes used interchangeably, especially when referring to parameter
analysis. However, uncertainty analysis almost always refers to a lack of knowledge regarding the value of the parameter,
whereas sensitivity refers to how much the outcome depends on variations in the parameters. There may be parameters
that the model is not sensitive to, but are highly uncertain, that have negligible effect on the predictions. Likewise, a model
that has a highly sensitive parameter requires some level of certainty in order to make robust predictions.

There are many methods used to understand sensitivity and uncertainty such as differential SA, sampling methods, and
segmented input distribution. These tools include those that investigate the parameters one at a time; those that sample all

( , , , ) ≈ (0.90, 0.15, 3.06, 0)P̄ Ā Ī B̄
λ ≈ −0.82, −0.11, −0.68, −1.30
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of parameter space; and those that partition parameter space, based on output analysis.

5 Global sensitivity analysis

SA is generally classified into two types: local SA and global SA. Local SA, usually described by the partial derivatives or
gradients of the output response with respect to input parameters, only considers the impact on the output of the variation
of a given input variable around a certain value while the other inputs are kept constant at their nominal values. Global SA,
on the other hand, considers variations of all input parameters simultaneously over the whole space. As a result,
interactions among different inputs can be detected. Another advantage of global SA is that type II errors (failure to
identify a significant parameter) can be avoided with a higher probability (Saltelli 2002).

One simple global method is calculating the partial rank correlation coefficient (PRCC) while utilizing Latin Hypercube
Sampling (LHS) which has been applied to many biological models (Bianca et al. 2012; Blower and Dowlatabadi 1994;
Jarrett et al. 2014; Marino et al. 2008). Sobol’ sensitivity measures (Sobol’ 1993, 2001; Saltelli 2002; Liu and Owen 2006)
that utilize the analysis of variance (ANOVA) of the model output are among the most widely used global SA methods.
There are alternative methods to Sobol’ sensitivity indices such as Fourier amplitude sensitivity test (FAST) method
(Cukier et al. 1973) and its extended version (eFAST) which are variance-based methods. A clear comparison of these
methods is provided by Saltelli and Bolado (Saltelli and Bolado 1998). Currently we are focusing on improving the
efficiency of computing the high-dimensional integrals in the Sobol’ method (Liu 2013).

Consider a mathematical model represented by a square integrable function , where  can be a system of algebraic,
integral or differential equations, and  are  uncertain input parameters of the model. In the present
work,  denotes the ODE system (1), and  denote the set of input parameters associated with it. Without loss of
generality, the model  is defined on the -dimensional unit hypercube. The ANOVA decomposition of  is defined
as

(2)
where  is a function that only depends on  variables , and  is a constant independent
of all . Let  be an index set and  denote the -dimensional vector with
elements  for . Then Eq. (2) can be rewritten as

(3)
The functions on the right hand side (RHS) of Eq. (3) are obtained recursively by

and

where  denotes the complement set of . The following orthogonality is obvious:

(4)

f (x) f (x)
x = ( , , … , )x1 x2 xd d

f (x) x
f (x) d f (x)

f (x) = + ( ) + ( , )f∅ ∑
i

f{i} xi ∑
i<j

f{i,j} xi xj

+ ( , … , ) + ( , , … , )∑
<⋯<i1 ir

f{ ,…, }i1 ir xi1 xir f{1,2,…,d} x1 x2 xd

( , … , )f{ ,…, }i1 ir xi1 xir r , … ,xi1 xir f∅
x = ( , … , ) ∈ [0, 1x1 xd ]d u ⊆ {1, … , d} xu |u|

xj j ∈ u
f (x) = ( ).∑

u⊆{1,…,d}
fu xu

= f (x) dxf∅ ∫[0,1]d

( ) = f (x) d − ( )fu xu ∫[0,1]|−u|
x−u ∑

v⊊u

fv xv

−u u
( ) ( ) dx = 0, for u ≠ v.∫[0,1]d

fu xu fv xv
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Variances are then defined as

ANOVA decomposition (3) and the orthogonality property (4) imply

Sobol’ (1993) introduced two types of global sensitivity indices (GSI)

 sums all the normalized variances whose index sets are subsets of , and  sums all those whose index sets have non-
empty intersections with . It is obvious that , and hence they can be used as the lower and upper bounds,
respectively, of the sensitivity measures on the parameters . Sobol’ (1993) first proposed Monte Carlo algorithms to
compute GSI and Saltelli (2002) further improved the efficiency of the algorithms. In the literature, typically the indices
with respect to a single parameter  (first order indices or main effects) and  (total indices or total effects) for 

, are computed. If  is relatively small, then the corresponding parameter can be frozen at its nominal
value without losing much uncertainty in the model output.

6 Results

The mean values of the sixteen model parameters are given in Table 3. We assume each parameter satisfies a uniform
distribution with a coefficient of variation (CV) 10 %. The CV can be different for different parameters. The CV could be
100 %, but one should ensure sampling does not produce a negative value for the relevant parameter. In practice, if the
sample value of the parameter is negative, it is ignored. However, the assumption of uniform distribution, particularly with
a large variance, could sometimes lead to non-intuitive results.
Table 3

Parameter mean values for the immune response model for the healthy state (BALB/c mouse)

Parameters Values References

0.27 Estimated

0.2 Estimated (Reynolds et al. 2006)

0.01 Estimated

0.12 Coxon et al. (1999)

0.11 Estimated
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0.1 Moura and Tjwa (2010)

0.25 Huhn et al. (1997), Coxon et al. (1999)

1.05 Estimated

0.45 Estimated

2 Brandwood et al. (1992), Edelson et al. (1975), Matsui and Ito (1983)

0.0174 Reynolds et al. (2006)

0.9 Spector (1956)

1 Assumed

1.5 Estimated

5 Brandwood et al. (1992), Edelson et al. (1975), Matsui and Ito (1983)

0.01 Estimated

All parameters have units  except for the following: , and  have units of  has
units of relative amount

The evolution of the model outputs at the mean parameter values is shown in Fig. 1. The model solutions are integrated to 
 h (about 21 days) and reach steady states. The steady state solutions are used as the model outputs. All the ODEs

were solved using implementations of MATLABs ODE45; Sobol’s algorithm was executed in Fortan 90.
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t = 500
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Fig. 1

Evolution of model outputs at parameter mean values representing the healthy state removal of infection
(BALB/c mouse). The final time  h

Figures 2 and 3 plot the main effects and total effects respectively. A direct comparison of the main and total effects
indicates that noticeable secondary interactions exist among parameters for outputs  and , while for outputs  and 
the higher interactions are very weak. Based on the total sensitivity indices , we have the following observations:

For output , parameters  can be labeled as insignificant (here
parameters with total index values less than  are considered insignificant).

For output , parameters , can be labeled as insignificant.

For output , parameters  can be labeled as insignificant.

For output , parameters  can be labeled as insignificant.

The threshold of the total index values is chosen subjectively. In our simulation, we have used relatively large samples to
compute those sensitivity indices to ensure that the indices are relatively accurate. Additionally, the total indices converge
much faster than the first order indices, which can be negative when their true values are close to 0.

t = 500

A B P I
S̄i

P , , , , , , g, , , , γα1 ρ1 β1 μ1 ρ2 μ3 KB α4 β4
0.03

A , , , , , , , g, , γα1 ρ1 β1 μ1 β2 ρ2 μ3 KB

I , , , , , , g, , γα1 ρ1 β1 μ1 ρ2 μ3 KB

B , , , , , , g, γα1 ρ1 β1 μ1 ρ2 μ3
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Fig. 2

Sensitivity analysis on the IRM model-main effects. Sensitivity analysis is run under the assumption that
all parameters are uniformly distributed with . The sample size for MC simulations is .
The four subplots correspond to the four outputs,  and , with final time set to  h

CoV = 10 % 50,000
P, A, I B 500



Fig. 3

Sensitivity analysis on IRM model-total effects. Sensitivity analysis is run under the assumption that all
parameters are uniformly distributed with . The sample size for MC simulations is .
The four subplots corresponds to the four outputs,  and , with final time set to  h

As a whole, we can see that  and  are insignificant for all output variables, while 
 and  are significant for at least one variable. Therefore, we will keep the eight

insignificant parameters fixed at their mean values. The resulting model has only eight uncertain parameters, and we call it
the “reduced model”.

Table 4 displays the first and second moments for all outputs estimated with Monte Carlo sampling. The moments
estimated for the two models agree very well. The estimated first moments of the reduced model have two-digit accuracy
compared to the estimates of the full model. The estimated second moments of the reduced model are 94.1–99.5 % of
those of the full model.
Table 4

First and second moments for the (original) model and the reduced model

Moment Full model Reduced model

CoV = 10 % 50,000
P, A, I B 500

, , , , , , gα1 ρ1 β1 μ1 ρ2 μ3 γ
, , , , , ,α2 β2 μ2 α3 β3 KB α4 β4
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5.2144E 3 4.9074E 3

1.3810E 3 1.3517E 3

7.4324E 2 7.3938E 2

The moments are estimated using Monte Carlo method with sample size 32,000

Figure 4 compares the histograms of the full and reduced models. For each output, the histogram of the reduced model is
in good agreement with that of the full model, indicating that the uncertainty in the reduced model is preserved. Note that
the dimension of the stochastic space of the full model is only half of that of the full model. The 95 % confidence intervals
for the Monte Carlo estimates of the first moments with sample size 32,000 are given in Table 5.

𝔼[f] P 0.8465 0.8469

I 0.2304 0.2300

B 2.1133 2.1181

A 0.2090 0.2071

𝕍[f] P − −

I − −

B 0.3345 0.3334

A − −
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Fig. 4

Comparison of full model and reduced model



Table 5

95 % confidence intervals for the Monte Carlo estimates of the first moments

Model output Full model Reduced model

The sample size is 32,000

7 Discussion and conclusion

This work identified several parameters as significant for different outputs. For the pro-inflammatory component
significant parameters are: , and . For the anti-inflammatory component significant parameters are: 

, and . For the inflammation component significant parameters are: , and 
. Finally, for the infection component of the model significant parameters are: , and .

This is summarized in Table 6.
Table 6

Outputs paired with their respective sensitive parameters

Model output Sensitive parameters

, , , , 

, , , , , 

, , , , , , 

, , , , , , , 

P [0.8457 0.8473] [0.8461 0.8476]

I [0.2300 0.2308] [0.2295 0.2303]

B [2.1070 2.1196] [2.1118 2.1244]

A [0.2060 0.2120] [0.2041 0.2100]

, , ,α2 α3 β2 β3 μ2
, , , ,α2 α3 α4 β3 β4 μ2 , , , , ,α2 α3 α4 β2 β3 β4

μ2 , , , , , ,α2 α3 α4 β2 β3 β4 μ2 KB

P α2 α3 β2 β3 μ2

A α2 α3 α4 β3 β4 μ2

I α2 α3 α4 β2 β3 β4 μ2

B α2 α3 α4 β2 β3 β4 μ2 KB
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, , , , , , , 

The parameters that are significant for all four components are: , and .  is the anti-inflammatory
recruitment rate from the pro-inflammatory response;  is the inflammation production rate from the pro-inflammatory
response;  is the rate the anti-inflammatory response reduces inflammation, and  is the natural decay rate of the
anti-inflammatory response. Table 7 lists the significant parameters by the number of outputs they affect. There are three
other parameters that were significant for three components ( , and ) while only one parameter was significant
for one component ( ). The parameters , and  were not changed for any of the experiments. Therefore we
chose to ignore them for this particular exploration.
Table 7

Sensitive parameters organized by the number of output variables they affect

Number of outputs affected Corresponding sensitive parameters

, , , 

, , 

After we identified these parameters, we compared them to the different parameter sets used for the biological
experiments described in (Jarrett et al. 2014). By calculating the local stability of the healthy versus unhealthy states of the
model system, we were able to identify the specific parameters that controlled the outcome of each experiment (even
though for each experiment several parameters were changed to fully capture the immunomodulation implemented).

The most interesting cases involve  and . The  parameter was changed for experiments involving
immunomodulation of the pro-inflammatory dominant mouse strain. These mice were given antibodies against different
pro-inflammatory cells to determine if the over active pro-inflammatory response was only making the infection worse due
to host tissue damage. In the biological experiments, as the pro-inflammatory response was reduced, more of the mice
were able to clear the infection and become healthy. For this particular parameter set, two parameters considered sensitive (

 and ) were at values that would normally force the healthy state of the system to be unstable. However, the
parameter  dominated this particular parameter set, allowing the healthy state to become stable (all negative
eigenvalues). Note that parameter  was not changed for these particular experiments, but its value was considered an
addition to stability for the healthy state.

Of the parameters changed for the vaccination experiments,  is significant. For these parameter sets,  was at a value
that normally would make the healthy state unstable. Recall that  was considered significant for all four components.
The parameter  was significant for only three components, but this parameter was increased enough to create stability
for the healthy state (all negative eigenvalues). Again,  was not changed for these particular experiments, but its value
was considered an addition to stability for the healthy state.

These results have several possible biological implications. The fact that  is the rate inflammation is produced by the
pro-inflammatory response and the fact that it is able to overcome two other significant parameters for experiments

B α2 α3 α4 β2 β3 β4 μ2 KB

, ,α2 α3 β3 μ2 α2
α3

β3 μ2

,α4 β2 β4
KB , ,α4 β2 μ2 KB

4 α2 α3 β3 μ2

3 α4 β2 β4

1 KB

α3 β4 α3

α2 β4
α3

β3

β4 α2
α2

β4
β3

α3
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involving the reduction of the pro-inflammatory response, suggest that a serious effect on the system is damage caused by
the pro-inflammatory response on the host tissue. This effect should be vigorously explored for the treatment of biofilm
infections.

We mentioned above that  is able to overcome a parameter that is sensitive for all four components whereas this
parameter is only sensitive for three, the anti-inflammatory, inflammation, and infection components.  is the rate the
pro-inflammatory response removes the infection, so it is perhaps obvious this rate would be significant to the bacteria
and even the inflammation components of the model. However, it is mysterious how this also affects the anti-
inflammatory response. In what way is effectiveness of the pro-inflammatory response against infection changing the anti-
inflammatory response’s behavior? This is also the only parameter implicated in the success for vaccination experiments.

Finally, the parameters , and  were ignored here because they did not necessarily apply to the parameter
sets for the eight experiments explored. It is worth mentioning, however, that  and  are significant for three out of the
four components like  mentioned above, and they could lead to significant changes in the system if manipulated.
Further experiments need to be carried out to characterize the effects of these four parameters especially  and  (the
rate the bacteria benefits from inflammation and the rate the anti-inflammatory response is blocked by the
inflammation/damage) which are interactions not seen before this particular model. These additional interactions can now
be considered necessary and significant for this particular system. See Table 8 for a summary of the experiments and their
significant parameters.
Table 8

List of parameters, their values, and outcomes for each specific experiment

Experiment Sensitive
parameters

Value Effective change to healthy
equilibrium

Healthy state
stability

1 0.11 Stable as  increases Stable

1.05 Stable as  decreases

1.5 Remains unchanged

0.1 Remains unchanged

2 Stable as  increases

5 Stable as  increases

0.25 Remains unchanged

β4
β4

, ,α4 β2 μ2 KB
α4 β2

β4
α4 β2

α2 α2

α3 α3

α4

β2

β3 β3

β4 β4

μ2
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1 Remains unchanged

2 0.9 Instability Unstable

4.75 Instability

3 3 Instability Unstable

4 1.5 Instability Unstable

5 and 6 0.09 Instability Stable

0.7 Stability

4.75 Instability

7 and 8 0.09 Instability Stable

7 Stability

For all the experiments after the first, we only list the sensitive parameters that change for the experimental set. The first
set can be considered a reference or basis set

Here we presented a global sensitivity analysis for a simple ODE model used to describe specific experiments for
characterizing osteomyelitis in mice. The results of this sensitivity analysis identified eight important parameters and eight
insignificant parameters. The analysis also indicated that there are no overall noticeable secondary interactions between
parameters, further validating the model structure.

By freezing the eight unimportant parameters we have a reduced model. This reduced model was shown to agree with the
full model. The reduced model can be used with very good accuracy to estimate the outputs compared to the full model.
With only half the parameters of the original, the reduced model can still capture the necessary behaviors to describe these
biological experiments. This narrows the scope of analysis for the system simplifying the mathematical work significantly.
It is also clear which parameters are of particular importance for good estimations.

Finally, we used the sensitivity results to investigate combined biological and mathematical experiments. This knowledge
of sensitive parameters was used to identify parts of the system responsible for the experimental outcomes. We were able

KB

α2

β4

β4

β3

α2

α3

β4

α2

β4



to identify the dominant parameters for each experiment based upon the parameters varied, the sensitive parameters
identified, and stability of the healthy steady-state. This information is of great importance to the biological investigations
—especially with regard to the successful vaccination experiments. We may not be able to identify the actual mechanism
for the change in stability, but we can identify the particular element of the system that is necessary for the desired result.
It is important to note that none of these conclusions were by intuition or by process of elimination but came directly from
mathematical results and logic—a repeatable process.

Our future endeavors are to improve the mathematical model synergistically involving biological experiments and
sensitivity analysis, and also to improve sensitivity analysis tools by making them more efficient, thereby enabling them to
be applied to complex and computation-intensive models.
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