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Abstract. We consider the coupled motion of a passive interface separating two immiscible
fluids of different viscosities. There are several applications, such as biofilm disinfection, where the
velocity of the two fluids as well as the interface is needed to determine the transport of diffusing
substances. In this investigation, we use a hybrid approach which employs the Boundary Integral
Method to determine the inteface velocity and the method of Regularized Stokeslets to detemine the
velocity elswhere in the domain.

Our approach capitalizes on the strengths of the two methods yielding an intuitive, efficient
method for determining the velocity of a two fluid system throughout the domain. The main result
of the presented method is the extension to two-fluid systems with varying viscosity. We describe
the results of three numerical simulations designed to test the numerical method and motivate its
use.
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1. Introduction. We consider the dynamics of two immiscible fluids separated
by a passive interface. The motion of both fluids is assumed to be dominated by
viscosity and described mathematically by the incompressible Stokes equations. In
the absence of a background flow, the fluids move because of stress differences at the
interface. Due to the linearity of Stokes equations, the dynamics with a background
flow is the superposition of the motion due to jump in the traction across the interface
and the background motion of the fluids.

Even when the fluid equations are linear, the coupling between two fluids renders
the full system nonlinear. Moreover, the interface between the two fluids is typically
heterogeneous and not aligned with a regular grid complicating numerical approxi-
mations. Several methods have been introduced to deal with this problem including
finite element methods and immersed interface methods. In the former, the main dif-
ficulty is that the domain is not stationary requiring substantial computation in order
to triangulate the domain. In the latter, stencils points and weights are changed,
typically using a priori jump conditions, to maintain second order accuracy in dis-
cretizations [11, 12, 14]. This can also be problematic for a dynamic interface even
when the interface is passive rather than elastic.

The boundary integral method (BIM) exploits the linearity of the basic flows to
translate the differential equations to integral equations. This method has several
advantages including reduction in the dimensionality of the problem, ability to han-
dle generic interfaces and incorporation of different material properties [17, 6]. The
integral equation can be used to solve for the velocities at every point in the domain.
In particular, the velocity of control points describing the interface can be determined
as well as those at grid points on a superimposed regular grid.

Although using the BIM equations to determine the velocity away from the grid
seems to be an attractive method to couple the fluid motion to the motion of diffusing
substances, in practice the computational time slows down the implementation. To
avoid this, we use the method of Regularized Stokeslets [4] to determine the velocities
away from the interface once the interface velocity is obtained. This method is second-
order accurate for points away from the interface. Near the interface the error is linear;
however, the velocity found from BIM is second-order accurate at the interface. The
method described here is a hybrid approach using BIM to determine the interface
velocity and Regularized Stokeslets to determine the velocity elsewhere capitalizing
on the effectiveness of each method. The focus of this report is on the development
when the viscosity of each fluid may substantially different rather than the application
of the developed algorithms which will be described elsewhere.

We organize the manuscript as follows: the first sections introduce the notation,
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governing equations and briefly describes the development of the numerical methods;
we then focus on several simulations aimed at validating the numerical methods and
finally summarize the results.

2. Numerical Methods. The boundary integral method for treating fluid prob-
lems in various parameter regimes has been extensively studied in the past several
decades [8, 15, 6]. The method relies on the existence of a Green’s function for the
PDE operators. The immediate practicality of this method is apparent for fluids that
can be treated as inviscid or as Stokes fluids [16, 8, 11, 1]. In either of these cases
Greens functions for various domains are readily obtained.

The main idea behind BIM is to use a version of the Lorenz reciprocal relation
[13] to recast the governing PDE’s as boundary integrals equations. In general the
reciprocal identity allows one to obtain information about a given flow, U using
information about another known flow, U′. Because the flow field for a viscous fluid
with a singular force can be calculated directly the unknown flow can then be related
to that of a known flow. Once the reciprocal relation is derived the governing equations
can be recast as integral equations whose domain is the boundary between the fluids.

2.1. Model Equations. We consider the coupled motion of two fluids of differ-
ent viscosities. We assume that viscosity dominates both fluids, so the inertial terms
may be neglected. The fluids occupy a region Ω and are separated by a surface, Γ.
We denote the two sub-regions as Ω(1) and Ω(2) for the external and internal fluids,
respectively.

The dynamics of both fluids are governed by the incompressible Stokes equations

∇ · σ(∗) = 0(2.1)

∇ · U(∗) = 0,(2.2)

where ∗ = 1, 2 denotes variables in the external and internal regions, respectively.
Stokes equations describe conservation of momentum and mass with stress tensors
σ∗ = P ∗I + µ∗(∇U∗ + ∇U∗T) contain both the hydrostatic pressures, P ∗, and the
viscous stresses proportional to the deformation gradient tensor.

By relating the unknown velocity U∗ to the flow induced by a singular force
with intensity f at a point x0, U′ we reduce the partial differential equations in both
sub-regions to a single integral equation that relates the bulk fluid velocity to the
traction jump across the interface, denoted ∆σ = (σ(1) − σ(2)), and the velocity at
the interface (see [15] for details):

U
(1)
j (x0) = − 1

4πµ(1)

∫

Γ

∆σikηk(x)Gij(x,x0) dl(x)

+
1 − λ

4π

∫

Γ

Ui(x)Tijk(x,x0)ηk(x) dl(x),(2.3)

where λ = µ(2)

µ(1) . Equation (2.3) governs the j-th component of the external fluid

velocity.
In a similar manner, we obtain an integral equation for the motion in Ω(2),

U
(2)
j (x0) = − 1

4πµ(1)λ

∫

Γ

∆σikηk(x)Gij(x,x0) dl(x)

+
1 − λ

4πλ

∫

Γ

Ui(x)Tijk(x,x0)ηk(x) dl(x).(2.4)
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2.2. Numerical Methods. The general method begins by initializing the in-
terface between the two fluids, Γ. We parametrize the coordinates of the interface
by s, Γ(x, y, t) = (x(s, t), y(s, t)). The interface is discretized into control points and
Equations (2.3) and (2.4) are solved at each of the discrete points. We then use
the method of regularized Stokeslets to determine the velocity at regular grid points.
The velocities can then used to determine the transport of a chemical throughout the
domain.

In Equations (2.3) and (2.4), the kernel of the first integral is given in terms of a
jump in the material stresses at the interface. This jump is assumed to be proportional
to the mean curvature as in [15] ∆σ = γη∇·η. Substituting this into the first integral
on the right-hand-side of Equation (2.3) and expanding the Einsteinian notation we
find that

− 1

4πµ(1)

∫

Γ

∆σikηk(x)Gij(x,x0) dl(x) =

− γ

4πµ(1)

∫

Γ

(G1jη1 + G2jη2)(η1
∂η1

∂x
+ η2

∂η2

∂y
) dl(x),

where η = (η1, η2), denotes the components of the outward normal vector. The
outward normals can be calculated using the parametrization of the interface. The
curvature of the boundary Γ(s) = (x(s), y(s)) is given by

γ =
xsyss − ysxss

(x2
s + y2

s)(3/2)
(2.5)

The Green’s function in two dimensions is,

Gij(x̂) = −δij ln r +
x̂ix̂j

r2
.(2.6)

The stress tensor is,

Tijk = −4
x̂ix̂jx̂k

r4
.(2.7)

Instead of using the free-space Green’s function we could use the Green’s function
that enforces the zero-flow boundary condition by subtracting of image singularities
if the domain is bounded (e.g. channel flow) [15].

2.3. Implementation. The velocity equations are Fredholm integrals of the sec-
ond kind. A standard approach is Nyströms method which begins with a discretization
of the boundary into N points [18]. Then we discretize the integral equation using a
quadrature rule, we use the trapezoidal method, at the N points and invert the re-

sulting matrix equation. Defining W = (U
(1)
1 ,U

(1)
2 ), the system of integral equations

can be written as

W = b +
1 − λ

4π

∫

Γ

KW dl(x),(2.8)

Where

b = − 1

4πµ(1)

(

∫

Γ
γ(G11η1 + G21η2))(

∂η1

∂x + ∂η2

∂y ) dl(x)
∫

Γ
γ(G12η1 + G22η2))(

∂η1

∂x + ∂η2

∂y ) dl(x)

)T

,
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and

K =

[

T111η1 + T112η2 T211η1 + T212η2

T121η1 + T122η2 T221η1 + T222η2

]

.

Applying the quadrature to Equation (2.8) yields a discrete system of the form

W(x0) = b(x0) +
1 − λ

4π

n
∑

j=1

K(x − x0)W(x)ωj .(2.9)

Evaluating this at the N control points leads to

W(x0,i) = bx0,i +
1 − λ

4π

n
∑

j=1

K(x0,i − xj)W(x0,i)ωj.(2.10)

This system can be inverted using any convenient iterative solver (i.e. gmres or
conjugate gradient).

It should be noted that the kernels of the integrals are singular at the interface.
Naive implementation can yield unstable numerical methods. We choose to regularize
the kernels in a manner that is similar to that used in the method of Regularized
Stokeslets. For that, we return to Equation 2.1 and replace the right-hand-side with
a regularize force fφǫ,

∇ · σ = f0φǫ(x − x0)(2.11)

∇ ·U = 0,(2.12)

where φǫ(x − x0) denotes a cutoff or blob function. For the particular choice of

φǫ = 3ǫ3

2π(|x|2+ǫ2)5/2 , we find that the regularized free-space Green’s function is,

Gij = −f0δij ln(
√

r2 + ǫ2 + ǫ) − ǫ(
√

r2 + ǫ2 + 2ǫ)

(
√

r2 + ǫ2 + ǫ)2(
√

r2 + ǫ2)
,(2.13)

here r = |x| and x = x − x0.
The reciprocal relation becomes

∫

Ω

U
(1)
j (x)φǫ dV (x) = − 1

4πµ(1)

∫

Γ

∆σikηk(x)Gǫ
ij(x,x0) dl(x)(2.14)

+
1 − λ

4π

∫

Γ

Ui(x)Tǫ
ijk(x,x0)ηk(x) dl(x),

where the regularized stresses are given by

Tijk = −δikP ǫ
j (x,x0) +

∂Gǫ
ij

∂xk
+

∂Gǫ
kj

∂xi
.

Cortez et. al [5] argue that the left-hand-side can be approximated by U
(1)
j (x0)

to order O(ǫ2) so we solve Equation (2.8), with the regularized kernel.
With this completed we have the velocity of the interface at the discrete control

points. We could proceed in a similar manner and find the velocity at each point in
a regular lattice. Instead we use the method described in [4]. We do this in several
steps first concentrating on the bulk fluid velocities away from the interface. Viewing
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the discrete interface points as the location of singular forces applied to the bulk fluid,
we determine the force that must be applied to obtain the velocity obtained above.
Because Stokes equations are linear, the velocity at the point is a linear combination of
the forces applied at each of the discrete points, therefore given the velocities a single
matrix inversion yields the force (see [4] for details) which are used to determine the
velocities. In a similar manner the velocities in the interior region are obtained.

3. Simulations.

3.1. Steady Flow. We first describe the numerical results of applying the method
for a single time step to validate the implementation of Nyströms method as well as
demonstrate the behavior of the method for systems with differing viscosities. We be-
gin with a square domain located at (−2, 2)× (−2, 2). A fluid of viscosity µint located
at the interior a circle of radius one. The fluid outside of the circle has viscosity µext

. We use methods described in [11] to derive an analytic solution to the problem with
given forces. We parametrize the circle by x = (cos(θ), sin(θ)) and take the analytic
solutions given in [4] and scale the pressure with the internal and external viscosities.

The analytic representation of the pressure and velocities

p(r, θ) =

{

µextr
−3 sin(3θ), for r > 1,

µintr
3 sin(3θ), for r < 1,

u1(r, θ) =

{

1
8r−2 sin(2θ) − 3

16r−4 sin(4θ) + 1
4r−2 sin(4θ), for r ≥ 1,

3
8r2 sin(2θ) + 1

16r4 sin(4θ) − 1
4r2 sin(2θ), for r ≥ 1,

u2(r, θ) =

{

1
8r−2 cos(2θ) + 3

16r−4 cos(4θ) − 1
4r−2 cos(4θ), for r ≥ 1,

3
8r2 cos(2θ) − 1

16r4 cos(4θ) − 1
4r2 cos(2θ), for r ≥ 1,

are used in

[σij ]ηj = −fi, for i = 1, 2

Where the stress tensor σ is

σij = −pδij + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

,

to calculate the boundary forces.
For our calculations we prescribe the boundary forces at discrete points repre-

senting the boundary and solve Equation (2.8) to determine the boundary velocities.
The velocities at the control points are used to determine the forces to apply to the
fluid regions to match the calculated velocities which in turn is used to determine
the external and internal velocities via the method of regularized Stokeslets. Because
we are only considering the steady problem for prescribed boundary forces we do not
need to use the curvature constitutive assumption to specify the boundary traction.
Instead, ∇σijηj = fi

To consider the convergence of the numerical approximation to the exact solution,
we allow the the number of points discretizing the interface, N , to increase while the
background grid used to determine the velocity away from the interface is fixed.
Following [4], we measure the error along the line (x, 3/10). We first consider the case
where the viscosities are equal as in [4] (see Table 3.1). The velocity field and x and
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Table 3.1

Velocity Errors: µ1 = µ2 = 1

# Boundary Points L2 error in u1 L2 error in u2

N = 50 2.99 × 10−2 3.14 × 10−2

N = 100 7.89 × 10−3 6.46 × 10−3

N = 200 1.83 × 10−3 1.03 × 10−3

N = 400 4.47 × 10−4 3.53 × 10−4

−2 −1 0 1 2
−0.1

−0.05

0

0.05

0.1

−2 −1 0 1 2
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Fig. 3.1. Comparison of the analytic velocities (solid) and the numerical approximation (dotted)
along the line (x, 3/10). Left caption shows u1 while the right shows u2. The background mesh has
100×100 points and the boundary is discretized with 200 points. The solution is being approximated
well except at the interface between the two fluids as in [4].

y- components of the velocity along the line (x, 3/10) in Figure 3.1 indicate that the
behavior is the similar as in [4].

Next, we consider the behavior when the viscosities of the two fluids are not equal.
In general the convergence is similar to that obtained for equal velocities although
as the ratio of the two viscosities becomes large, the convergence appears to become
linear rather than quadratic. The results for different viscosities are summarized in
Tables 3.2 and 3.3.

3.2. Viscous Suctioning. In the previous section we computed the approxi-
mate solution for a single time step. To determine the behavior of the numerical
methods for a moving boundary, we choose to examine a problem that is similar to
the well known Hele-Shaw problem with a singular sink term [2]. Here, we consider
the flow of a two-fluid system where an initially circular blob of fluid with viscosity
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Table 3.2

Velocity Errors: µ1 = 1, µ2 = 2

# Boundary Points L2 error in u1 L2 error in u2

N = 50 4.52 × 10−2 3.26 × 10−2

N = 100 1.19 × 10−2 1.39 × 10−2

N = 200 3.47 × 10−3 7.74 × 10−3

N = 400 1.36 × 10−3 4.17 × 10−3

Table 3.3

Velocity Errors: µ1 = 1, µ2 = 5

# Boundary Points L2 error in u1 L2 error in u2

N = 50 2.68 × 10−2 5.06 × 10−2

N = 100 9.94 × 10−2 1.96 × 10−2

N = 200 4.78 × 10−3 8.90 × 10−3

N = 400 2.50 × 10−3 4.35 × 10−4

µ2 is immersed in a viscous fluid of viscosity µ1. The circle is initially of radius one
and centered at the origin. At time t = 0, we initiate a singular sink term at a point
interior to the circle that draws the interior fluid out of the domain causing motion
of the interface and the external fluid. This problem has been treated in many inves-
tigations (see [7] for analytic treatment and references). In general, in the absence
of surface tension there is a singularity in finite time whenever µ2 > µ1. With small
surface tension, the problem is regularized and various smooth solutions can be found
depending on the location of the sink relative to the circle as well as the strength of
the point-sink.

To include a singular sink term in our scheme, we consider the background flow
that is the solution to:

∆U = ∇p

∇ ·U = qδ(x − x0),

Usuction = x−x0

|x−x0|
. This is added to the flow obtained due to the interface motion to

give the motion of the interface.
The computational domain [−1.5, 1.5] × [−1.5, 1.5] is discretized into a regular

background grid with 200× 200 grid points. This initial interface is a circle of radius
one centered at the origin. There are 150 regularly spaced control points. The surface
tension, γ, is fixed at 0.001 for all simulations. In general, our method is able to
capture the behaviors that are found analytically. The results for various simulations
are shown in Figure 3.2.

3.3. Advection. One strength of the method described above, is efficient ap-
proximation of the velocity everywhere in the domain. This is important in transport
problems, such as biofilm disinfection, where the main goal is to determine the con-
centration of biocide and nutrient as it moves in the bulk fluid and into the biofilm
domain. Several models treat the biofilm as a viscous fluid with a viscosity that is
substantially different than that of the external fluid [3, 10, 9].

The domain is a channel with a parabolic background flow. Within the channel
a generic biofilm interface separates the biofilm fluid, with viscosity µbiofilm from
the bulk fluid with viscosity µbulk. Although biofilms display viscoelastic properties,
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Fig. 3.2. Results for viscous suctioning. a.) Initially circular interface with singularity at
(0, 0.1). b.) To break the symmetry, we perturb the circle into an ellipse with major axis 1 and minor
axis 0.9 in the y-direction. The singularity is placed at the origin. c.) To break the symmetry, we
perturb the circle by adding a periodic fluctuation in the radius with amplitude .01. The singularity
is placed at the origin. In all simulations the µ2 = 1 and µ1 = 0.1 and the initial interface is
indicated with the dotted line while the other curves are shown after 100 and 250 time steps.

the relaxation time has been measured to be on the order of minutes [10]. Because
transport of biocide within the biofilm typically takes place on a time scale of hours
to days, we treat the biofilm as a viscous fluid immersed in a fluid of much less
viscosity [9]. Measurements of biofilm viscosity indicate that the viscosities differ
by several orders of magnitude [10]. We set µbiofilm = µbulk × 10−6 and impose a
parabolic background flow which is altered by the presence of the biofilm. Following
the methods described above, we determine the velocity of the interface and fluid in
both the bulk and biofilm regions. This is used to track the advection and diffusion of
a chemical whose concentration, C, is determined mathematically by a conservation
law

∂C

∂t
+ (U · ∇)C = D∆C,

where the concentration is fixed at C0 at the leading edge of the channel. No-flux and
outflow conditions are applied at the channel walls and trailing edge of the channel.
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Given the velocity at at time t we determine the concentration at time t + ∆t using
upwinding and ADI to solve the discretized equation.

In Figure 3.3, we show the developing concentration contours as well as the
biofilm/bulk fluid interface for various times. We plan to indicate the effects of in-
cluding the motion of the biofilm in a future investigation.

Fig. 3.3. Time dependent concentration profiles indicating the diffusion and advection of a
chemical through the two-fluid domain. We show only part of the domain: [0, 1] × [0, 0.4]. The
dynamic fluid/biofilm interface is indicated in black and the concentration for all figures is indicated
by the colorbar.

4. Discussion. This investigation describes the development of a hybrid method
for numerically approximating the motion to two viscous fluids separated by an in-
terface. The interface velocity at control points is determined by solving an integral
equation. The velocity at the control points is then used as data to determine the
flow outside and inside the interface using the method of Regularized Stokeslets.
Our method capitalizes on the strengths of both of the methods, since Regularized
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Stokeslets is an efficient method but leads to errors at the interface which is precisely
where BIM is being applied.

To test the numerical method, we studied three different problems. The first was
a static problem for which there is an analytic solution. We found that when the
viscosities of the fluids are equal, the method behaves as in [4]. However, we have
extended the treatment to case with differing viscosities. We then treated a viscous
suctioning problem where we were able to capture the development of cusps as found
analytically. Finally, we applied our method to determine the concentration of a
chemical as it diffuses and advects throughout a channel filled with two immiscible
fluids of extremely different viscosities.

This work is supported in part by DMS #0548511.
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